封锁阳光大学
题目描述
曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街。河蟹看到欢快的曹,感到不爽。河蟹决定封锁阳光大学,不让曹刷街。
阳光大学的校园是一张由 n n n 个点构成的无向图, n n n 个点之间由 m m m 条道路连接。每只河蟹可以对一个点进行封锁,当某个点被封锁后,与这个点相连的道路就被封锁了,曹就无法在这些道路上刷街了。非常悲剧的一点是,河蟹是一种不和谐的生物,当两只河蟹封锁了相邻的两个点时,他们会发生冲突。
询问:最少需要多少只河蟹,可以封锁所有道路并且不发生冲突。
输入格式
第一行两个正整数,表示节点数和边数。
接下来
m
m
m 行,每行两个整数
u
,
v
u,v
u,v,表示点
u
u
u 到点
v
v
v 之间有道路相连。
输出格式
仅一行如果河蟹无法封锁所有道路,则输出 Impossible
,否则输出一个整数,表示最少需要多少只河蟹。
样例 #1
样例输入 #1
3 3
1 2
1 3
2 3
样例输出 #1
Impossible
样例 #2
样例输入 #2
3 2
1 2
2 3
样例输出 #2
1
提示
【数据规模】
对于
100
%
100\%
100% 的数据,
1
≤
n
≤
1
0
4
1\le n \le 10^4
1≤n≤104,
1
≤
m
≤
1
0
5
1\le m \le 10^5
1≤m≤105,保证没有重边。
思路: 可在图中用1表示有河蟹占据,-1表示无河蟹占据。当所有路径都被封锁时,一定会满足以下两个条件:
①一条道路的两端不能同时是1或-1
②每个点都会被标记为1或-1
而如果出现了不能封锁的情况,那么一定是在某一个点处出现了道路两端的标记相同的情况。
因此,可用广度优先搜索遍历这个无向图,将起始点标记为1,然后将搜索到的下一个点标记为上一个点的相反数(即-1),如果下一个点已经被标记过且与上一个点的标记相同,则说明不能封锁全部道路。
注意,全部的点标记完之后可能会出现标记为1的点多于标记为-1的点的情况,因此需要取两种标记点数量的较小值。同时,因为可能会出现多个图(某些点与其他的点不连通),因此需要把每个点尝试作为遍历起点,若这个点没被访问过则以这个点为起始点进行遍历。
代码:
#include <bits/stdc++.h>
using namespace std;
int n, m, dot[10005], ans = 0;
bool vis[10005];
vector<int> vec[10005];
queue<int> q;
int main(){
cin >> n >> m;
for(int i = 1; i <= m; i++){
int x, y;
cin >> x >> y;
vec[x].push_back(y), vec[y].push_back(x);
}
for(int i = 1; i <= n; i++){
int a = 0, b = 0;
if(!vis[i] && !vec[i].empty()){
q.push(i);
dot[i] = 1;
while(!q.empty()){
int now = q.front();
q.pop();
if(dot[now] == 1) a++;
else if(dot[now] == -1) b++;
vis[now] = true;
for(int i = 0; i < vec[now].size(); i++){
int to = vec[now][i];
if(vis[to]){
if(dot[to] == dot[now]){
cout << "Impossible";
return 0;
}
}
else{
q.push(to);
dot[to] = -dot[now];
}
}
}
}
ans += min(a, b);
}
cout << ans;
return 0;
}