Week 12

文章介绍了两道编程题目,第一题是关于宝物筛选的问题,利用多重背包和二进制差分策略求解最大价值。第二题涉及进制转换错误导致的数字谜题,通过枚举错误位来找到正确数值。第三题是关于质数的异或值问题,检查两个质数的异或是否等于1。
摘要由CSDN通过智能技术生成

洛谷P1776 宝物筛选

题目描述

终于,破解了千年的难题。小 FF 找到了王室的宝物室,里面堆满了无数价值连城的宝物。

这下小 FF 可发财了,嘎嘎。但是这里的宝物实在是太多了,小 FF 的采集车似乎装不下那么多宝物。看来小 FF 只能含泪舍弃其中的一部分宝物了。

小 FF 对洞穴里的宝物进行了整理,他发现每样宝物都有一件或者多件。他粗略估算了下每样宝物的价值,之后开始了宝物筛选工作:小 FF 有一个最大载重为 W W W 的采集车,洞穴里总共有 n n n 种宝物,每种宝物的价值为 v i v_i vi,重量为 w i w_i wi,每种宝物有 m i m_i mi 件。小 FF 希望在采集车不超载的前提下,选择一些宝物装进采集车,使得它们的价值和最大。

输入格式

第一行为一个整数 n n n W W W,分别表示宝物种数和采集车的最大载重。

接下来 n n n 行每行三个整数 v i , w i , m i v_i,w_i,m_i vi,wi,mi

输出格式

输出仅一个整数,表示在采集车不超载的情况下收集的宝物的最大价值。

样例 #1

样例输入 #1

4 20
3 9 3
5 9 1
9 4 2
8 1 3

样例输出 #1

47

提示

对于 30 % 30\% 30% 的数据, n ≤ ∑ m i ≤ 1 0 4 n\leq \sum m_i\leq 10^4 nmi104 0 ≤ W ≤ 1 0 3 0\le W\leq 10^3 0W103

对于 100 % 100\% 100% 的数据, n ≤ ∑ m i ≤ 1 0 5 n\leq \sum m_i \leq 10^5 nmi105 0 ≤ W ≤ 4 × 1 0 4 0\le W\leq 4\times 10^4 0W4×104 1 ≤ n ≤ 100 1\leq n\le 100 1n100

思路: 典型的多重背包,可转化为二进制差分+01背包问题。

代码:

#include <bits/stdc++.h>
using namespace std;
int n, W, v[100005], w[100005], indexx = 1, dp[2][50005];
int main(){
    cin >> n >> W;
    for(int i = 0; i < n; i++){
        int a, b, c;
        cin >> a >> b >> c;
        int tmp = 1;
        while(tmp < c){
            v[indexx] = a * tmp, w[indexx] = b * tmp;
            indexx++;
            c -= tmp;
            tmp *= 2;
        }
        v[indexx] = a * c, w[indexx] = b * c;
        indexx++;
    }
    for(int i = 1; i <= indexx; i++){
        int now = i % 2, pre = (i + 1) % 2;
        for(int j = 0; j <= W; j++){
            if(j >= w[i]) dp[now][j] = max(dp[pre][j], dp[pre][j - w[i]] + v[i]);
            else dp[now][j] = dp[pre][j];
        }
    }
    cout << dp[indexx % 2][W];
    return 0;
}

洛谷P1555 尴尬的数字

题目背景

Bessie 刚刚学会了不同进制数之间的转换,但是她总是犯错误,因为她的两个前蹄不能轻松的握住钢笔。

题目描述

每当 Bessie 将一个数转换成新的进制时,她总会写错一位数字。例如,她将 14 转化成 2 进制数,正确的结果是 1110,但她可能会写成 0110 或 1111。Bessie 从不会意外的增加或删减数字,所以她可能会写出以 0 开头的错误数字。

给出 Bessie 转换后 N N N 的 2 进制形式和 3 进制形式,请计算出 N N N 的正确数值(用十进制表示)。 N N N 可能会达到 1 0 9 10^9 109,输入数据保证解的存在唯一性。

输入格式

第一行, N N N 的 2 进制表示(有一位是错误的数字)。

第二行, N N N 的 3 进制表示(有一位是错误的数字)。

输出格式

N N N 的正确值。

样例 #1

样例输入 #1

1010
212

样例输出 #1

14

思路: 根据题意,依次改变每一位上的数字来枚举所有的转化前的数字,其中两种进制数枚举的所有数中会出现一组相同的数,这个数即为答案。

代码:

#include<bits/stdc++.h>
using namespace std;
int a[500], b[500], index1, index2;
int main(){
    string s1, s2;
    cin >> s1 >> s2;
    for(int i = 0; i < s1.length(); i++){
        string tmp = s1;
        tmp[i] = ((tmp[i] - '0') ^ 1) + '0';
        int num = 0;
        for(int j = 0; j < tmp.length(); j++){
            num = num * 2 + (tmp[j] - '0');
        }
        a[index1++] = num;
    }
    for(int i = 0; i < s2.length(); i++){
        for(int j = 1; j <= 2; j++){
            string tmp = s2;
            tmp[i] = (((tmp[i] - '0') + j) % 3) + '0';
            int num = 0;
            for(int k = 0; k < tmp.length(); k++){
                num = num * 3 + (tmp[k] - '0');
            }
            b[index2++] = num;
        }
    }
    for(int i = 0; i < index1; i++){
        for(int j = 0; j < index2; j++){
            if(a[i] == b[j]){
                cout << a[i];
                return 0;
            }
        }
    }
    return 0;
}

洛谷P8845 [传智杯 #4 初赛] 小卡和质数

题目背景

小卡最近迷上了质数,所以他想到了一个和质数有关的问题来考考你。

质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。

题目描述

小卡有 T ( 1 ≤ T ≤ 1 0 5 ) T(1\le T\le 10^5) T(1T105) 组询问。每次询问给你两个正整数 x , y ( 1 ≤ x , y ≤ 1 0 9 ) x,y(1\le x,y\le 10^9) x,y(1x,y109)

小卡想知道,第 x x x 个质数和第 y y y 个质数是否满足 p x ⊕ p y = 1 p_x \oplus p_y =1 pxpy=1,即第 x x x 个质数和第 y y y 个质数的异或值是否是 1 1 1

输入格式

第一行一个正整数 T T T,表示询问的数量。

接下来 T T T 行,每行两个正整数 x , y x,y x,y,表示询问的是第 x x x 个质数和第 y y y 个质数。

输出格式

T T T 行,每行一个字符串YesNo,分别表示两个质数的异或值是 1 1 1 或不是 1 1 1

样例 #1

样例输入 #1

4
1 2
23 145
66 2
1 14

样例输出 #1

Yes
No
No
No

思路: 如果两个数的异或值是1,则这两个数的二进制表示中除了最后一位其他位的数字都必须相同,那么这两个数的数值只相差1。又因为题目要求找质数,那么只有2和3,即第一和第二个质数符合条件。因此判断是否为这两个质数即可。

代码:

#include<bits/stdc++.h>
using namespace std;
int main(){
    int a, b, t;
    cin >> t;
    for(int i = 0; i < t; i++){
        cin >> a >> b;
        if((a == 1 && b == 2) || (a == 2 && b == 1)) cout << "Yes" << endl;
        else cout << "No" << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值