1292:宠物小精灵之收服

【算法分析】

该问题为二维费用背包。精灵球数量、皮卡丘体力值都是费用。

题目说,如果一个野生小精灵让皮卡丘的体力小于等于0,那么无法收服该小精灵。也就是说当皮卡丘有m点体力时,最多可以消耗的体力为m-1点。在输入m后,先让m--,此时m表示最多可以消耗的体力值。

1. 状态定义

状态定义:dp[i][j][k]:在前i个野生小精灵中选择小精灵捕捉,最多使用j个精灵球,以及k点皮卡丘的体力值,能捕捉到的最多的小精灵的数量。

2. 状态转移方程

记:b[i]:收第i小精灵需要的精灵球数, d[i]:收服第i小精灵皮卡丘损失的体力值

子集1:如果捕捉第i小精灵,接下来需要在前i-1个小精灵中选择小精灵,最多使用j-b[i]个精灵球,皮卡丘最多消耗k-d[i]点体力值,在这种情况下能够捕捉到的小精灵数量最多为dp[i-1][j-b[i]][k-d[i]],加上刚刚捉到的1只,所以dp[i][j][k] = dp[i-1][j-b[i]][k-d[i]]+1

子集2:如果不捕捉第i小精灵,接下来需要在前i-1个野生小精灵中选择,最多使用j个精灵球,以及k点皮卡丘的体力值,可以捕捉到的小精灵数量最多为dp[i][j][k] = dp[i-1][j][k]

以上两种情况取最大值

3. 获取剩余体力

第二个问要求的是,在收服最多小精灵的前提下,皮卡丘可以剩余的最多体力。

假设最多有n个精灵球,皮卡丘最多可以消耗m点体力(这是m--后的m,实际总体力值为m+1),一共有ka个野生小精灵。那么在所有野生小精灵中,选择要捕获的小精灵,最多消耗n个精灵球和m点皮卡丘的体力,能获得的最多的小精灵的数量为dp[ka][n][m]。如果不消耗m点体力,而是消耗k点皮卡丘的体力(0 ≤ k ≤ m 0\le k \le m0≤k≤m),看在捕获的小精灵数量相同的情况下,k最小可以是几。也就是说,在所有小精灵中选择小精灵捕获,消耗n个精灵球,要捕获数量为dp[ka][n][m]的小精灵,皮卡丘最少消耗的体力可以是多少。

k从0遍历到m,如果dp[ka][n][k] == dp[ka][n][m],那么最少消耗k点体力,就可以捕获到最多的小精灵。剩下的体力值应该为m+1-k(因为m是最多可以消耗的体力值,总体力值实际为m+1)。

4. 复杂度优化

根据该题的描述,dp[i][j][k]第1维是小精灵数量,最大100;第2维是精灵球个数,最大1000;第3维是皮卡丘体力值,最大500。乘在一起为这个三维数组的最大变量数,为5 ∗ 1 0^7,内存空间限制为65535KB,65535 ∗ 1024 / 4 = 16776960,最多可以保存约1.67 ∗ 1 0^7 个int类型的变量。如果直接声明三维数组使用,一定会内存超限。因此对于该题,必须做滚动数组优化,去掉表示前几个小精灵的第一维。

【参考代码】

#include <bits/stdc++.h>
using namespace std;
int dp[1005][505];//dp[i][j][k]:(第一维i被优化掉)前i个野生小精灵中最多使用j个精灵球,k点皮卡丘的体力值,能捕捉到的最大小精灵数量。 
int b[105], d[105];//b[i]:收第i小精灵需要的精灵球球数 d[i]:收第i小精灵皮卡丘损失的体力值 
int main()
{
    int n, m, ka, r;
    cin >> n >> m >> ka;//n个精灵球 皮卡丘m点体力值 野生小精灵有ka个 
    m--;//不能把m点体力值都用完,最多可以使用m-1点体力 
    for(int i = 1; i <= ka; ++i)
        cin >> b[i] >> d[i];
    for(int i = 1; i <= ka; ++i)
        for(int j = n; j >= b[i]; --j)
            for(int k = m; k >= d[i]; --k)
                dp[j][k] = max(dp[j][k], dp[j-b[i]][k-d[i]]+1);
    for(int k = 0; k <= m; ++k)//用掉的体力值可以为0,从0开始遍历 
    {
        if(dp[n][k] == dp[n][m])
        {
            r = m + 1 - k ;//原总体力值为m+1,减去用掉的体力j 
            break;
        }   
    }
    cout << dp[n][m] << ' ' << r;
    return 0; 
}

<think>好的,我现在需要解决用户关于C++信息学奥赛一本通中第1292题“宠物小精灵收服”的解题思路的问题。首先,我应该回忆一下这道题的题目内容,可能是一个动态规划的问题,因为涉及到资源的最优分配。根据用户提供的引用[2],题目可能涉及宠物小精灵收服,需要处理精灵球的数量和体力值,类似二维背包问题。 接下来,我需要确认题目的具体要求。通常这类题目会给出精灵球的数量限制和皮卡丘的体力限制,每个小精灵需要消耗一定数量的精灵球和体力,目标是收服尽可能多的小精灵,并且在数量相同的情况下,保留尽可能多的体力。这确实符合二维背包问题的特征,即两个维度的限制:精灵球和体力值。 然后,我需要构建动态规划的状态表示。二维背包问题的状态通常是dp[i][j],表示使用i个精灵球和j点体力时能收服的最大小精灵数量。状态转移方程应该是对于每个小精灵k,如果选择收服,那么dp[i][j] = max(dp[i][j], dp[i - balls_needed[k]][j - hp_cost[k]] + 1)。需要注意的是,体力不能为零,所以j的范围可能从1开始。 接下来,处理边界条件和初始化。初始状态应该是dp[0][0] = 0,表示没有使用任何精灵球和体力时收服0个小精灵。然后遍历所有可能的i和j,更新状态。 然后,在计算完所有状态后,需要找到收服最多小精灵的数量,接着在相同数量下寻找剩余体力的最大值。这可能需要遍历dp数组,找到最大值对应的体力消耗情况,然后用总体力减去消耗的体力得到剩余体力,同时确保剩余体力至少为1,因为体力为0的话无法收服。 还要考虑时间和空间复杂度的问题。题目可能有数据量限制,需要确保二维数组的大小足够,并且循环结构不会导致超时。例如,如果精灵球数量上限是1000,体力上限是500,那么二维数组的大小应该是dp[1001][501],这样处理是可行的。 另外,需要参考用户提供的引用[3],其中提到了动态规划的方法,特别是带记忆的递推法和前缀和的运用。虽然那题是关于最大子段和的,但动态规划的思路是相通的,可以借鉴状态转移的方法。 可能需要注意的细节包括:每个小精灵只能被收服一次(01背包),所以需要逆序遍历i和j以避免重复计算。同时,体力消耗不能超过当前体力值,所以在循环时需要从最大值往下减。 最后,验证一下是否有特殊情况,比如当精灵球或体力不足以收服任何小精灵时,输出0和满体力。或者在多个解中选择剩余体力最大的情况。 总结步骤应该是:问题分析转化为二维背包模型,状态定义,状态转移方程,初始化,循环结构,结果提取和优化。这样用户能够逐步理解解题思路,并应用到代码实现中。</think>### C++信息学奥赛一本通 1292题"宠物小精灵收服"解题思路 #### 1. 问题分析 题目属于典型的**二维费用背包问题**,需要同时管理两种资源: - **精灵球数量**(背包第一维度) - **皮卡丘体力值**(背包第二维度) 目标是在有限资源下收服最多的小精灵,且在数量相同的情况下保留最大剩余体力[^2]。 #### 2. 动态规划模型设计 **状态定义**: - $dp[i][j]$ 表示使用$i$个精灵球和$j$点体力时能收服的**最大小精灵数量** **状态转移方程**: $$ dp[i][j] = \max(dp[i][j],\ dp[i - cost\_ball][j - cost\_hp] + 1) $$ 其中$cost\_ball$和$cost\_hp$是收服当前小精灵需要的精灵球和体力值[^3]。 #### 3. 关键实现步骤 1. **初始化**: ```cpp int dp[MAX_BALL][MAX_HP] = {0}; // MAX_BALL=精灵球上限,MAX_HP=体力上限 ``` 2. **递推过程**(逆序遍历防止重复计算): ```cpp for (每个小精灵k) { for (i = 当前最大球数; i >= cost_ball[k]; i--) { for (j = 当前最大体力; j >= cost_hp[k]; j--) { dp[i][j] = max(dp[i][j], dp[i - cost_ball[k]][j - cost_hp[k]] + 1); } } } ``` 3. **结果提取**: - 遍历所有$dp[i][j]$找到最大收服数$max\_cnt$ - 在满足$max\_cnt$的情况下,找到最小体力消耗$min\_hp\_cost$ - 剩余体力为$total\_hp - min\_hp\_cost - 1$(需保证剩余体力≥0) #### 4. 示例代码框架 ```cpp #include <iostream> #include <algorithm> using namespace std; int main() { int ball_total, hp_total, n; // 总球数、总体力、小精灵数量 cin >> ball_total >> hp_total >> n; int dp[1001][501] = {0}; // 根据题目数据范围设定 while (n--) { int cost_ball, cost_hp; cin >> cost_ball >> cost_hp; // 逆序更新二维背包 for (int i = ball_total; i >= cost_ball; --i) for (int j = hp_total - 1; j >= cost_hp; --j) // 体力不能耗尽 dp[i][j] = max(dp[i][j], dp[i - cost_ball][j - cost_hp] + 1); } int max_cnt = 0, min_hp = hp_total; for (int i = 0; i <= ball_total; ++i) for (int j = 0; j < hp_total; ++j) // j < hp_total保证体力不归零 if (dp[i][j] > max_cnt || (dp[i][j] == max_cnt && (hp_total - j) > min_hp)) { max_cnt = dp[i][j]; min_hp = hp_total - j; } cout << max_cnt << " " << min_hp - 1; // 实际剩余体力要减1(如总HP100,消耗50,应剩49) return 0; } ``` #### 5. 关键优化点 - **滚动数组优化**:通过逆序遍历避免重复计算 - **体力边界处理**:始终保留至少1点体力(`j < hp_total`) - **结果筛选策略**:优先保证数量最大,其次选择剩余体力最多
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值