常见面试题,以下使用C++解答5种常见排序方式。
以下排序皆为从小到大。
头文件及测试程序:
#include <iostream>
#include <vector>
using namespace std;
// -------------------
// 排序函数sort()放在这
// -------------------
// 测试数据
int main()
{
vector<int> nums = {1, 3, 10, 18, 13, 2, 7, 9, 17};
// 调用相应sort()
mergeSort(nums, 0, nums.size() - 1);
for (auto num: nums) {
cout << num << " ";
}
cout << endl;
return 0;
}
1. 选择排序
解释:每次选择最小的,扔到最前面,剩余元素重复操作,即完成排序。
程序示例:
void selectSort(vector<int> &nums) {
int n = nums.size();
for (int i = 0; i < n; ++i) {
int minIndex = i;
for (int j = i + 1; j < n; ++j) {
if (nums[j] < nums[minIndex]) {
// 内层循环,找到最小值对应索引
minIndex = j;
}
}
// 最小值扔到当前范围队头
swap(nums[i], nums[minIndex]);
}
}
时间复杂度:显然O(n^2);
2. 冒泡排序
解释:相邻元素比较,并交换。
程序:
void bubbleSort(vector<int> &nums) {
int n = nums.size();
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
if (nums[i] > nums[j]) {
// 符合条件时,不断与当前i交换
swap(nums[i], nums[j]);
}
}
}
}
程序上与选择排序很像。
区别在于,选择排序寻找索引,只交换一次;冒泡交换多次。
时间复杂度:O(n^2);
3. 插入排序
类似于扑克牌的排序,每抽一张扑克牌,将扑克牌插入正确的位置使之有序。
解释:每抽一张牌,与前面的数比较,插入正确位置。
程序:
void insertSort(vector<int> &nums) {
int n = nums.size();
// 开始抽牌
for (int i = 0; i < n; ++i) {
// 定义当前牌,前一张牌索引
int cur = nums[i], j = i - 1;
while (j >= 0 && cur < nums[j]) {
// 当前牌更小,前一张牌后移
nums[j + 1] = nums[j];
// 比较前前一张牌
--j;
}
// 循环终止时,在比较的牌j 后面一个位置放置cur当前牌
nums[j + 1] = cur;
}
}
时间复杂度:O(n ^ 2);
4. 快速排序
解释:
- 使用“哨兵”划分。选一个基准数base, < base 的数扔左边, > base的数扔右边;
- 形成:左边 < base < 右边。
- 重复操作:在左边选择leftBase,重复以上操作,右边同理;
显然,属于分治算法,大问题分解为左右两边子问题。
程序:
// 快排一次,返回基准数base划分后的索引
int partition(vector<int>& arr, int low, int high) {
// 选择base
int pivot = arr[high];
int i = (low - 1);
for (int j = low; j <= high - 1; j++) {
// 如果当前数小于base
if (arr[j] < pivot) {
i++;
// 将小于base的数arr[j]扔到前面去
swap(arr[i], arr[j]);
}
}
// 将base 放到分界线i + 1处
swap(arr[i + 1], arr[high]);
// 返回分界线i + 1
return (i + 1);
}
// 递归函数用于快速排序
void quickSort(vector<int>& arr, int low, int high) {
if (low >= high) return;
// 开始划分,返回分界线index
int pi = partition(arr, low, high);
// 递归排序子问题
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
平均时间复杂度:递归层数O(logn), 划分1次O(n),总体O(nlogn);
5. 归并排序
解释:基于分治思想,将大问题分为子问题。具体来讲将nums中的数字从中间mid一分为二、二分为四......,直至每段长度为1,然后开始合并。
程序上:分治算法多数基于递归实现,因为子问题可以调用函数本身处理;
void merge(vector<int> &nums, int left, int mid, int right) {
vector<int> temp(right - left + 1);
int i = left, j = mid + 1;
int k = 0;
while(i <= mid && j <= right) {
if (nums[i] < nums[j]) {
temp[k++] = nums[i++];
} else{
temp[k++] = nums[j++];
}
}
// 剩余元素加入temp
while (i <= mid) {
temp[k++] = nums[i++];
}
while(j <= right) {
temp[k++] = nums[j++];
}
// 将temp的值赋值给原nums
for (int k = 0; k < temp.size(); ++k) {
nums[left + k] = temp[k];
}
}
void mergeSort(vector<int> &nums, int left, int right) {
// 终止条件
if (left >= right) return;
int mid = left + (right - left) / 2;
// 子问题排序
mergeSort(nums, left, mid);
mergeSort(nums, mid+ 1, right);
// 合并子问题
merge(nums, left, mid, right);
}
分治使用递归的方法,在程序中一定先判定终止条件,不然子问题无法退出。
时间复杂度O(nlogn)。
6. 小结
- 前面3种时间复杂度都为O(n^2),后面2种为O(nlogn);
- 常用高效排序算法:插入和快速排序;
- 前4种均为原地算法;最后1种归并排序,非原地算法,因为在merge阶段使用辅助容器。
- 前3种空间复杂度O(1),最后2种使用递归的栈空间,空间复杂度O(n)。
- 此外还有堆排、桶排、计数排序、基数排序可自行了解。