1、番外说明
大家好,我是小P,本系列是本人对Python模块Numpy的一些学习记录,总结于此一方面方便其它初学者学习,另一方面害怕自己遗忘,希望大家喜欢。此外,对“目标检测/模型压缩/语义分割”感兴趣的小伙伴,欢迎加入QQ群 813221712 讨论交流,进群请看群公告!(可以点击如下连接直接加入!)
点击链接加入群聊【Object Detection】:https://jq.qq.com/?_wv=1027&k=5kXCXF8
2、正题
参考链接:http://www.runoob.com/numpy/numpy-tutorial.html
2.1 Numpy简介
NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
NumPy 的前身 Numeric 最早是由 Jim Hugunin 与其它协作者共同开发,2005 年,Travis Oliphant 在 Numeric 中结合了另一个同性质的程序库 Numarray 的特色,并加入了其它扩展而开发了 NumPy。NumPy 为开放源代码并且由许多协作者共同维护开发。
NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:
1、一个强大的N维数组对象 ndarray
2、广播功能函数
3、整合 C/C++/Fortran 代码的工具
4、线性代数、傅里叶变换、随机数生成等功能
2.2 Numpy的应用
NumPy 通常与 SciPy(Scientific Python)和 Matplotlib(绘图库)一起使用, 这种组合广泛用于替代 MatLab,是一个强大的科学计算环境,有助于我们通过 Python 学习数据科学或者机器学习。
SciPy 是一个开源的 Python 算法库和数学工具包。
SciPy 包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。
Matplotlib 是 Python 编程语言及其数值数学扩展包 NumPy 的可视化操作界面。它为利用通用的图形用户界面工具包,如 Tkinter, wxPython, Qt 或 GTK+ 向应用程序嵌入式绘图提供了应用程序接口(API)。
2.3 Numpy相关链接
1、NumPy 官网 http://www.numpy.org/
2、NumPy 源代码:https://github.com/numpy/numpy
3、SciPy 官网:https://www.scipy.org/
4、SciPy 源代码:https://github.com/scipy/scipy
5、Matplotlib 官网:https://matplotlib.org/
6、Matplotlib 源代码:https://github.com/matplotlib/matplotlib
2.4 Numpy模块安装
Python 官网上的发行版是不包含 NumPy 模块的。我们可以使用以下几种方法来安装。
2.4.1 使用已有的发行版本
对于许多用户,尤其是在 Windows 上,最简单的方法是下载以下的 Python 发行版,它们包含了所有的关键包(包括 NumPy,SciPy,matplotlib,IPython,SymPy 以及 Python 核心自带的其它包):
● Anaconda: 免费 Python 发行版,用于进行大规模数据处理、预测分析,和科学计算,致力于简化包的管理和部署。支持 Linux, Windows 和 Mac 系统。
● Enthought Canopy: 提供了免费和商业发行版。持 Linux, Windows 和 Mac 系统。
● Python(x,y): 免费的 Python 发行版,包含了完整的 Python 语言开发包 及 Spyder IDE。支持 Windows,仅 限 Python 2 版本。
● WinPython: 另一个免费的 Python 发行版,包含科学计算包与 Spyder IDE。支持 Windows。
● Pyzo: 基于 Anaconda 的免费发行版本及 IEP 的交互开发环境,超轻量级。 支持 Linux, Windows 和 Mac 系统。
2.4.2 使用 pip 安装
安装 NumPy 最简单的方法就是使用 pip 工具,使用如下命令进行安装,:
python -m pip install --user numpy scipy matplotlib ipython jupyter pandas sympy nose
–user 选项可以设置只安装在当前的用户下,而不是写入到系统目录。
或者直接pip命令安装:
pip2(pip3) install numpy
pip2 还是pip3根据自己的python版本选择,有时直接使用pip(只存在一个版本python的时候)
2.4.3 Linux下的安装
Ubuntu & Debian
sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook python-pandas python-sympy python-nose
CentOS/Fedora
sudo dnf install numpy scipy python-matplotlib ipython python-pandas sympy python-nose atlas-devel
Mac 系统
Mac 系统的 Homebrew 不包含 NumPy 或其他一些科学计算包,所以可以使用以下方式来安装:
python -m pip install numpy scipy matplotlib
2.4 Numpy模块验证
测试是否安装成功:
>>> from numpy import *
>>> eye(4)
array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])
from numpy import * 为导入 numpy 库。也可以使用import numpy as np代替,则eye(4)的使用更改为np.eye(4),推荐使用后面这种形式,具体原因请参照模块说明。
eye(4) 生成对角矩阵。