15、并发编程中的共识普遍性与自旋锁解析

并发编程中的共识普遍性与自旋锁解析

在并发编程领域,共识普遍性和自旋锁是两个重要的概念。下面将详细介绍相关的理论知识、代码实现以及性能分析。

1. 共识普遍性相关理论

共识普遍性在并发编程中起着关键作用,涉及到多个引理和定理。

  • 引理 6.4.4 :在某操作的第 10 行之前,有 head[A].seq ⩾ start(A) 成立。这是因为 head[A] 会在第 20 行或第 28 行被设置为指向 A 的最后追加节点。在第 9 行调用 Node.max() 之后, max(head[A], head[0], ..., head[n - 1]) 就是 head[A].seq ,结合引理 6.4.3 可得出此结论。
  • 引理 6.4.5 :始终有 |concur(A)| ⩾ head[A].seq - start(A) ⩾ 0 成立。其中,下界由引理 6.4.4 得出,上界由相关等式得出。
  • 定理 6.4.1 :某算法是正确且无等待的。因为 A 执行主循环的次数最多为 n + 1 次,每次成功迭代 head[A].seq 增加 1。经过 n + 1 次迭代后,根据引理 6.4.5 可知 |concur(A)| ⩾ head[A].seq
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值