15、智慧城市智能交通系统设计

智慧城市智能交通系统设计

1. 现有相关研究

在车辆健康参数异常检测方面,不同研究者提出了多种方法:
- Prytz使用卡尔曼滤波和CNN识别车辆各传感器信息中的异常。
- Prytz引入车辆行业预测性维护的逐点对话,运用不同机器学习算法预测故障。
- 提出了用于故障检测的共识自组织模型(COSMO),并在重型卡车和城市公交车上进行测试。
- Prytz等人使用随机森林预测公交车和卡车空气压缩机的维修需求。

在车辆通信、智能交通系统和交通管理方面,也有众多方法被提出:
- 部分解决方案依靠安装在道路上的传感器检测交通密度,从而控制信号时长。
- Mazloumi等人提出使用GPS模块跟踪车辆位置并管理交通流量的系统。
- 利用路边的CCTV摄像头通过图像分析和计算机视觉算法检测车辆,进而管理交通流量。
- Su等人尝试通过安卓应用的WiFi实现车与车之间的通信。

2. 提出的系统

该系统的原型由一个与多个子系统通信的安卓应用组成。该应用通过蓝牙接口与用户的汽车通信,通过WiFi Direct与附近车辆通信,并通过GSM/LTE系统通过互联网与云通信。以下是各部分的详细介绍:

2.1 车辆健康与诊断

实时监测车辆健康状况并诊断车辆各部件的故障或异常是该系统的主要功能之一。具体操作步骤如下:
1. 将便携式ELM327设备连接到车辆的OBD端口,该设备用于翻译大多数现代汽车中的车载诊断(OBD)接口。
2. 将基于Arduino并带有蓝牙模块HC05的电路与ELM327设备连接,以接收OBD传感器的数据。
3

Matlab基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率内容概要:本文围绕Matlab在电力系统优化与控制领域的应用展开,重点介绍了基于粒子群优化算法(PSO)和鲁棒MPPT控制器提升光伏并网效率的技术方案。通过Matlab代码实现,结合智能优化算法与先进控制策略,对光伏发电系统的最大功率点跟踪进行优化,有效提高了系统在不同光照条件下的能量转换效率和并网稳定性。同时,文档还涵盖了多种电力系统应用场景,如微电网调度、储能配置、鲁棒控制等,展示了Matlab在科研复现与工程仿真中的强大能力。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源系统开发的工程师;尤其适合关注光伏并网技术、智能优化算法应用与MPPT控制策略研究的专业人士。; 使用场景及目标:①利用粒子群算法优化光伏系统MPPT控制器参数,提升动态响应速度与稳态精度;②研究鲁棒控制策略在光伏并网系统中的抗干扰能力;③复现已发表的高水平论文(如EI、SCI)中的仿真案例,支撑科研项目与学术写作。; 阅读建议:建议结合文中提供的Matlab代码与Simulink模型进行实践操作,重点关注算法实现细节与系统参数设置,同时参考链接中的完整资源下载以获取更多复现实例,加深对优化算法与控制系统设计的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值