算法简介:
快速排序有个关键就是确定“基准关键字”,也叫“枢纽”,通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比关键字小,另外一部分的所有数据都比关键字要大,然后再按此方法分别对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。算法分析:
1)对于数组A[N],设置两个变量i、j,排序开始的时候:i=0,j=N-1;2)以第一个数组元素作为关键数据,赋值给key,即key=A[0];
3)从j开始向前搜索,即由后开始向前搜索(j--),找到第一个小于key的值A[j],将A[j]和A[i]互换;
4)从i开始向后搜索,即由前开始向后搜索(i++),找到第一个大于key的A[i],将A[i]和A[j]互换;
5)重复第3、4步,直到i=j; (3,4步中,没找到符合条件的值,即3中A[j]不小于key,4中A[i]不大于key的时候改变j、i的值,使得j=j-1,i=i+1,直至找到为止。找到符合条件的值,进行交换的时候i, j指针位置不变。另外,i==j这一过程一定正好是i+或j-完成的时候,此时令循环结束)。
6)在当前无序区中选取划分的基准关键字是决定算法性能的关键。
“三者取中”规则,即在当前区间里,将该区间首、尾和中间位置上的关键字比较,取三者之中值所对应的记录作为基准。
例子中我取中间数作为关键字;
java代码实现:
import java.util.Arrays;
/**
* 快速排序
**/
public class QuickSort {
/**
* @param a 待排序数组
* @param left_index 左边元素索引
* @param right_index 右边元素索引
*/
public static void quickSort(int a[], int left_index, int right_index) {
int left, right, pivot;
if (left_index >= right_index) return;
left = left_index;
right = right_index;
// 选择基数为中间的数
pivot = a[(left_index + right_index) / 2];
while (left <= right) {
while (a[left] < pivot) left++;
while (a[right] > pivot) right--;
if (left <= right) {
swap(a, left, right);
left++;
right--;
}
}
// 递归
quickSort(a, left_index, right);
quickSort(a, left, right_index);
}
/**
* 元素交换
**/
public static void swap(int a[], int i, int j) {
int temp;
temp = a[i];
a[i] = a[j];
a[j] = temp;
}
public static void main(String args[]) {
int[] a = {4, 6, 3, 2, 9, 3, 6, 2, 0, 34, 23, 65};
quickSort(a, 0, a.length - 1);
System.out.println("排序结果:"+Arrays.toString(a));
}
}
结果测试:
[0, 2, 2, 3, 3, 4, 6, 6, 9, 23, 34, 65]