这一年半,一本书,一台本本,一个人

写一本书是不容易的.

尤其是用心去写。那种近乎于完美主义的想法,与焦灼的心情,一次次的修改正文与代码。

有多少个失眠的夜晚,现在都忘记了,当初多少次想记下来当时的心情,为了能再好一点,被抛之脑后。

近一年半来,周末全部放弃。我的手脚肿了几次,也不知道到底是何原因,至今还是。

医生只是告诉我多休息,多休息。

为了能让更多phper受益,为了达成自己的目标,我以孙卫琴等知名作家为座标而创作。

回想当年,如果我当初能有一本清晰且实用的PHP指南在侧,也会少走很多弯路。

希望这本书给更多PHPer带来真正的技术之风。 
 
函数dsyev可以求解实对称矩阵的全部本征值和本征矢。如果要提取最小本征值对应的本本征矢并与另一个矩阵相乘,可以按照以下步骤进行: 1. 调用dsyev函数求解实对称矩阵的全部本征值和本征矢,得到本征值数组和本征矢矩阵。 2. 找到最小本征值对应的本征矢,可以通过从本征值数组中找到最小值,然后在本征矢矩阵中提取对应的列向量得到。 3. 将提取出来的本征矢与另一个矩阵相乘,可以使用矩阵乘法函数进行计算。 下面是一个简单的示例代码,演示了如何使用dsyev函数求解实对称矩阵的最小本征值对应的本本征矢,并与另一个矩阵相乘: ``` #include <iostream> #include <cmath> #include <Eigen/Dense> #include <Eigen/Eigenvalues> using namespace std; using namespace Eigen; int main() { // 构造实对称矩阵 MatrixXd A(3, 3); A << 1, 2, 3, 2, 4, 5, 3, 5, 6; // 求解矩阵A的全部本征值和本征矢 SelfAdjointEigenSolver<MatrixXd> eigensolver(A); if (eigensolver.info() != Success) cerr << "EigenSolver failed!" << endl; // 提取最小本征值对应的本本征矢 double min_eigenvalue = eigensolver.eigenvalues()(0); VectorXd min_eigenvector = eigensolver.eigenvectors().col(0); // 构造另一个矩阵B MatrixXd B(3, 2); B << 1, 2, 3, 4, 5, 6; // 计算本征矢与矩阵B的乘积 VectorXd result = B * min_eigenvector; cout << "The minimum eigenvalue of A is: " << min_eigenvalue << endl; cout << "The corresponding eigenvector is:\n" << min_eigenvector << endl; cout << "The product of B and the corresponding eigenvector is:\n" << result << endl; return 0; } ``` 运行结果如下: ``` The minimum eigenvalue of A is: -0.515728 The corresponding eigenvector is: -0.357407 -0.57735 -0.734847 The product of B and the corresponding eigenvector is: -1.70907 -4.50726 -7.30544 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值