汉诺塔问题(递归)

问题介绍:

汉诺塔问题源自印度一个古老的传说,印度教的“创造之神”梵天创造世界时做了 3 根金刚石柱,其中的一根柱子上按照从小到大的顺序摞着 64 个黄金圆盘。梵天命令一个叫婆罗门的门徒将所有的圆盘移动到另一个柱子上,移动过程中必须遵守以下规则:

  • 每次只能移动柱子最顶端的一个圆盘;
  • 每个柱子上,小圆盘永远要位于大圆盘之上;

一根柱子上摞着 3 个不同大小的圆盘,那么在不违反规则的前提下,如何将它们移动到另一个柱子上呢?如图提供一种解决方案:

汉诺塔问题中,3 个圆盘至少需要移动 7 次,移动 n 的圆盘至少需要操作 2n-1 次。 

在汉诺塔问题中,当圆盘个数不大于 3 时,多数人都可以轻松想到移动方案,随着圆盘数量的增多,汉诺塔问题会越来越难。也就是说,圆盘的个数直接决定了汉诺塔问题的难度,解决这样的问题可以尝试用分治算法,将移动多个圆盘的问题分解成多个移动少量圆盘的小问题,这些小问题很容易解决,从而可以找到整个问题的解决方案。

算法解决及其算法思想:

首先,对于这三个柱,我们分成起始柱(A),辅助柱

### PTA 汉诺塔问题递归解题思路 对于经典的汉诺塔问题,当给定三个柱子(源柱`a`、辅助柱`b`和目标柱`c`)以及位于源柱上的若干不同小的圆盘时,目的是将这些圆盘全部按照相同顺序移至目标柱上。此过程中需遵循两条原则:每次仅能移动最上方的一个圆盘;任何时候都不能将较的圆盘置于较小者之上。 #### 递归算法的核心逻辑在于: - 对于只有一个圆盘的情况,直接将其由源柱移动到目标柱即可完成任务。 - 若存在多个圆盘,则先利用递归方法把除了最那个以外的所有其他圆盘借助目标柱作为中介转移到辅助柱上去; - 接着单独转移最的圆盘到达目的地; - 最后再一次采用递归手段把之前暂存于辅助柱的小型圆盘们搬回原位即目标柱处[^2]。 下面是基于上述原理编写的C语言版本的汉诺塔递归解决方案: ```c #include <stdio.h> void move(char from_peg, char to_peg){ printf("Move disk from %c to %c\n",from_peg,to_peg); } // n表示要移动的磁盘数量,a,b,c分别是起始杆,过渡杆,目的杆. void hanoi(int n,char a,char b,char c){ if(n==1){ // 只有一个磁盘的情况下直接从a移动到c move(a,c); }else{ hanoi(n-1,a,c,b); // 把n-1个磁盘从a通过c移动到b move(a,c); // 单独移动第n个磁盘从a到c hanoi(n-1,b,a,c); // 再次调用函数把剩余的n-1个磁盘从b通过a移动到c } } int main(){ int num; scanf("%d",&num); hanoi(num,'A','B','C'); return 0; } ``` 这段代码实现了标准版三柱汉诺塔游戏的模拟过程,并打印出了每一步骤的具体动作描述。其中核心部分是`hanoi()`函数内部定义了一个条件分支结构来区分单件物品传输还是多级嵌套式的复杂情形处理机制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

遇见陌生人了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值