定理:如果p为素数,那么素数p一定存在原根,并且p的原根的个数为phi(p-1).
设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.
假设一个数g对于P来说是原根,那么g^i mod P的结果两两不同,且有 1<g<P, 0<i<P,那么g可以称为是P的一个原根,归根到底就是g^(P-1) = 1 (mod P)当且
仅当指数为P-1的时候成立.(这里P是素数).
求原根目前的做法只能是从2开始枚举,然后暴力判断g^(P-1) = 1 (mod P)是否当且当指数为P-1的时候成立。而由于原根一般都不大,所以可以暴力得到.
求一个奇素数的所有原根方法。
设g是P的平方非剩余,是P-1的标准分解式,若恒有成立,
则g就是P的原根。
- #include <iostream>
- #include <string.h>
- #include <algorithm>
- #include <stdio.h>
- using namespace std;
- #define LL long long
- const int N = 1000010;
- bool prime[N];
- LL p[N];
- LL pr[N];
- LL k=0,c;
- void isprime()
- {
- LL i,j;
- memset(prime,true,sizeof(prime));
- for(i=2;i<N;i++)
- {
- if(prime[i])
- {
- p[k++]=i;
- for(j=i+i;j<N;j+=i)
- {
- prime[j]=false;
- }
- }
- }
- }
- void cal(LL n)
- {
- LL t=n,i,a;c=0;
- for(i=0;p[i]*p[i]<=n;i++)
- {
- if(n%p[i]==0)
- {
- pr[c]=p[i];
- while(n%p[i]==0) n/=p[i];
- c++;
- }
- }
- if(n>1)
- {
- pr[c]=n;
- c++;
- }
- }
- LL quick_mod(LL a,LL b,LL m)
- {
- LL ans=1;
- a%=m;
- while(b)
- {
- if(b&1)
- {
- ans=ans*a%m;
- b--;
- }
- b>>=1;
- a=a*a%m;
- }
- return ans;
- }
- int main()
- {
- LL P,i,t,g,root;
- isprime();
- while(cin>>P)
- {
- cal(P-1);
- for(g=2;g<P;g++)
- {
- bool flag=true;
- for(i=0;i<c;i++)
- {
- t=(P-1)/pr[i];
- if(quick_mod(g,t,P)==1)
- {
- flag=false;
- break;
- }
- }
- if(flag)
- {
- root=g;
- cout<<root<<endl;
- }
- }
- }
- return 0;
- }