自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

紫芝的博客

「Stay hungry. Stay foolish.」

  • 博客(554)
  • 资源 (16)
  • 论坛 (2)
  • 收藏
  • 关注

原创 label smoothing(标签平滑)

label smoothing是一种在分类问题中,防止过拟合的方法。label smoothing(标签平滑)交叉熵损失函数在多分类任务中存在的问题label smoothing(标签平滑)参考资料交叉熵损失函数在多分类任务中存在的问题多分类任务中,神经网络会输出一个当前数据对应于各个类别的置信度分数,将这些分数通过softmax进行归一化处理,最终会得到当前数据属于每个类别的概率。qi=exp(zi)∑j=1kexp(zj)q_i={{exp(z_i)}\over{\sum_{j=1}^kex.

2021-06-19 11:55:57 6

原创 免费网络学术资源获取

谷粉学术:https://gfsoso.99lb.net/学术屋:http://sci.xueshuwu.cn/轻略搜索:https://search.qinggl.com/欢迎补充~

2021-06-15 16:15:48 19

转载 CVPR 2019 论文和开源项目合集(Papers with Code)

CVPR 2019 论文开源项目合集传送门:CVPR 2020 论文开源项目合集附:530 篇 CVPR 2019 论文代码链接目标检测目标跟踪语义分割实例分割GAN人脸检测人体姿态估计6DoF 姿态估计头部姿态估计人群密度估计更新记录:20200226:添加 CVPR 2020 论文开源项目合集20191026:添加 530 篇论文代码链接20190405:添加 8 篇论文(目标检测、语义分割等方向)20190408:添加 6 篇论文(目标跟踪、GAN

2021-05-24 16:04:34 13

转载 CVPR 2020 论文和开源项目合集(Papers with Code)

CVPR 2020 论文开源项目合集,同时欢迎各位大佬提交issue,分享CVPR 2020开源项目【推荐阅读】CVPR 2020 virtualECCV 2020 论文开源项目合集来了:https://github.com/amusi/ECCV2020-Code关于往年CV顶会论文(如ECCV 2020、CVPR 2019、ICCV 2019)以及其他优质CV论文和大盘点,详见: https://github.com/amusi/daily-paper-computer-vision

2021-05-24 16:03:19 111

转载 CVPR 2021 论文和开源项目合集(Papers with Code)

摘自:https://github.com/amusi/CVPR2021-Papers-with-CodeCVPR 2021 论文和开源项目合集CVPR 2021 论文和开源项目合集(Papers with Code)【CVPR 2021 论文开源目录】BackboneNASGANVAEVisual TransformerRegularizationSLAM长尾分布(Long-Tailed)数据增广(Data Augmentation)无监督/自监督(Un/Self-Supervised)半监督学习(Se

2021-05-24 16:01:35 82

原创 Java 实现 Trie (前缀树)

LeetCode:https://leetcode-cn.com/problems/implement-trie-prefix-tree/什么是前缀树Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。Trie() 初始化前缀树对象。void insert(String word) 向前缀树中插入字符串 word 。boolean search(String word) 如果字符串 w

2021-05-23 22:00:39 6

原创 Pytorch的网络结构可视化:Netron与TensorBoardX

原文地址:https://blog.csdn.net/xiaoxifei/article/details/82735355最近刚刚发现一个非常好用的显示模型神器Netronhttps://github.com/lutzroeder/Netronhttps://www.electronjs.org/apps/netron借助这个工具可以像windows的软件一样导入已经训练好的模型加权重即可一键生成以下是我的一个模型使用该工具可视化结果,只不过目前该工具对于onnx支持非常好,但是pytorch权重

2021-05-13 15:02:54 63 2

原创 PyTorch数据归一化处理:transforms.Normalize及计算图像数据集的均值和方差

计算图像数据集的均值和方差1.使用PyTorch计算图像数据集的均值和方差(推荐)2.使用opencv和numpy计算图像数据集的均值和方差3.计算某个目录下所有图片的均值和方差参考资料1.使用PyTorch计算图像数据集的均值和方差(推荐)Pytorch图像预处理时,通常使用transforms.Normalize(mean, std)对图像按通道进行标准化,即减去均值,再除以方差。这样做可以加快模型的收敛速度。其中参数mean和std分别表示图像每个通道的均值和方差序列。Imagenet数据集的均

2021-05-10 16:51:25 455

转载 卷积神经网络训练的三个概念(Epoch,Batch,Iteration)

总结下训练神经网络中最最基础的三个概念:Epoch(训练多少轮), Batch(每次输入网络样本的个数), Iteration(迭代次数)。1.名词解释名词定义Epoch使用训练集的全部数据,对模型进行一次完整训练,称之为“一代训练”Batch使用训练集中的一小部分样本,对模型权重进行一次反向传播的参数更新,这一小部分样本被称为“一批数据”Iteration使用一个Batch数据,对模型进行一次参数更新的过程,称之为“一次训练”epoch:训练时,所有训练

2021-05-09 17:04:23 189

原创 python实现PDF压缩

目前只针对纯PDF图片压缩。实现原理: 主要通过PYMUPDF进行图片提取,图片压缩,再合并生成一个新的PDF。1.安装依赖包笔者的环境是Windows 10,Python3.8pip install fitz2.提取原PDF关键代码3.合并图片生成PDFimport globimport fitzimport osimport time# 1.提取原PDF关键代码def pdf2pic(filename): image_floder='pdf'+str(time.tim

2021-05-07 20:27:57 46

转载 python自编实现kmeans算法(任意维度)

import numpy as npimport pandas as pd def dist(x,y): xy = (sum((x-y)**2))**0.5 return(xy) def kmeans(data,m): m = m name = ['center'+str(i) for i in range(m)] for j in range(len(name)): name[j] = data.iloc[j,:]

2021-05-06 10:50:52 27

原创 OpenCV-Python图像拼接方法

什么是图像拼接?图1:图2:image_stitching_simple.py# import the necessary packagesfrom imutils import pathsimport numpy as npimport argparseimport imutilsimport cv2# construct the argument parser and parse the argumentsap = argparse.ArgumentParser()ap.a

2021-05-03 20:19:32 73

原创 Python GUI编程(Tkinter)笔记

Python GUI编程Tkinter笔记1 显示任意格式图片2 固定框架Frame大小3 选择文件夹或文件4 展示菜单栏5 展示选择的图片1 显示任意格式图片Tkinter只支持显示GIF图片,若需要显示PNG、JPG、BMP等格式图片,方法如下:import tkinterfrom PIL import Image, ImageTkroot = tkinter.Tk()label_text = tkinter.Label(root, text="图片标题")label_text.pack

2021-05-02 09:37:43 91 6

转载 Python数据分析·读取CSV文件转为字典

Python数据分析·读取CSV文件转为字典1.pandas 读取CSV2.CSV转为字典3.CSV转为数组Python pandas包可以直接读取CSV文件,为了接下来的数据分析,考虑到转为字典或者数组会方便一些。1.pandas 读取CSVimport numpy as npimport pandas as pddf=pd.read_csv("C:/Users/YUSHENG/Desktop/score.csv")2.CSV转为字典key=[]value=[]for i in df[

2021-05-01 22:32:41 175

原创 【腾讯面试题】Java集合:List、Set以及Map

原文:https://blog.csdn.net/zhangqunshuai/article/details/80660974Java集合:List、Set以及Map概述Collection接口List:有序,可重复ArraysListVectorLinkedListSet:无序,唯一HashSetLinkedHashSetTree SetMap接口概述List , Set, Map都是接口,前两个继承至Collection接口,Map为独立接口List下有ArrayList,Vector,Link

2021-04-24 12:29:17 32

原创 深度学习:混淆矩阵,准确率,top1,top5,每一类的准确率

TP,FN,FP,TNTP(True Positive):真实为0,预测为0;关于神经网络图像分类中的Top-1和Top-5错误率Top-1错误率对一个图片,只判断概率最大的结果是否是正确答案。Top-5错误率对一个图片,判断概率排名前五中是否包含正确答案。...

2021-04-22 22:10:01 512 4

原创 【深度学习】通过python画出loss曲线

通过python画出loss曲线将训练过程中的running loss保存到文件1.读取txt文件2.取出相应列的数据作为绘图的x和y3.先创建一幅图,再在这幅图上添加一个小图4.画出整体的loss曲线将训练过程中的running loss保存到文件for x in range(100): with open('loss_records.txt', 'a') as f: f.write('%d %.3f\n' % (x, x + 1)) with open('accur

2021-04-21 21:23:32 402 2

原创 【腾讯面试题】Docker

摘自:https://www.runoob.com/docker/docker-tutorial.htmlDockerDocker 是一个开源的应用容器引擎,基于 Go 语言 并遵从 Apache2.0 协议开源。Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口(类似 iPhone 的 app),更重要的是容器性能开销极低。Docker 从 17.03 版本之后

2021-04-19 20:03:08 66

原创 Opencv-python 3.3版本安装

因为目前为止(2019.11.17)opencv最新版本为4.1,因此直接pip install opencv-python的话,无法安装想要的版本(老师推荐3.X)上清华镜像查找opencv-python3.3的版本https://pypi.tuna.tsinghua.edu.cn/simple/opencv-python/放到本地目录pip install opencv_python-3.3.1.11-cp36-cp36m-win_amd64.whl安装成功...

2021-04-17 09:23:18 43

原创 屠榜各大CV任务!最强骨干网络:Swin Transformer来了

原文地址:https://mp.weixin.qq.com/s/z91JuI2w1QZg-3ZxN-OmwQpaper: https://arxiv.org/abs/2103.14030code: https://github.com/microsoft/Swin-Transformer目标检测:https://github.com/SwinTransformer/Swin-Transformer-Object-Detection语义分割:https://github.com/SwinTransfo

2021-04-14 14:32:32 455

转载 用Transformer完全代替CNN:AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

原文地址:https://zhuanlan.zhihu.com/p/266311690论文地址:https://arxiv.org/pdf/2010.11929.pdf用Transformer完全代替CNN1. Story2. Modela 将图像转化为序列化数据b Position embeddingc Learnable embeddingd Transformer encoder3. 混合结构4. Fine-tuning过程中高分辨率图像的处理5. 实验1. Story近年来,Transfor

2021-04-11 21:25:51 56

转载 【CVPR-2019】基于深度学习优化光照的暗光图像增强

论文:Underexposed Photo Enhancement Using Deep Illumination Estimation地址:https://openaccess.thecvf.com/content_CVPR_2019/html/Wang_Underexposed_Photo_Enhancement_Using_Deep_Illumination_Estimation_CVPR_2019_paper.html代码:https://github.com/Jia-Research-Lab/

2021-04-11 19:44:46 521

转载 【腾讯面试题】Nginx

什么是Nginx?Nginx是一个轻量级/高性能的反向代理Web服务器,实现非常高效的反向代理、负载均衡,可以处理2-3万并发连接数,官方监测能支持5万并发,现在中国使用Nginx网站有很多,例如:新浪,网易,腾讯等。为什么要用Nginx?跨平台、配置简单、反向代理、高并发连接:处理2-3万并发连接数,官方检测能支持5万并发,内存消耗少:开启10个Nginx才占150M内存,nginx处理静态文件好,耗费内存少。Nginx内置的健康检查功能:如果有一个服务器宕机,会做一个健康检查,再发送请求就不会

2021-04-10 23:29:53 45

转载 【腾讯面试题】MySQL常用数据库引擎

MySQL常用数据库引擎MyISAM存储引擎InnoDB存储引擎MEMORY存储引擎存储引擎的选择查看MySQL数据库使用的引擎SHOW ENGINES;查看数据库默认使用哪个引擎SHOW VARIABLES LIKE 'storage_engine';存储引擎说明MyISAM高速引擎,拥有较高的插入、查询速度,但不支持事务InnoDB5.5版本后MySQL的默认数据库,支持事务和行级别锁定,比MyISAM处理速度稍慢ISAMMyISAM的前身,

2021-04-10 19:44:13 40

原创 【腾讯面试题】SQL语句优化方法有哪些?

SQL语句优化性能不理想的系统中,除了一部分是因为应用程序的负载确实超过了服务器的实际处理能力外,更多的是因为系统存在大量的SQL语句需要优化。为了获得稳定的执行性能,SQL语句越简单越好。对复杂的SQL语句,要设法对其进行简化。常见的简化规则如下:1)不要有超过5个以上的表连接(JOIN)2)考虑使用临时表或表变量存放中间结果3)少用子查询4)视图嵌套不要过深,一般视图的嵌套不要超过两个为宜连接的表越多,其编译的时间和连接的开销也越大,性能越不好控制。最好是把连接拆开成较小的几个部分逐个

2021-04-10 17:19:21 59

转载 【腾讯面试】微信小程序授权登录流程是什么?

微信小程序授权登录流程小程序登录登录流程时序登录流程授权登录组件server.jsapp.jslogin.wxmllogin.jslogin.jsonindex.wxmlindex.jsindex.json微信小程序官方文档https://developers.weixin.qq.com/miniprogram/dev/framework/open-ability/login.html小程序登录小程序可以通过微信官方提供的登录能力方便地获取微信提供的用户身份标识,快速建立小程序内的用户体系。登

2021-04-10 12:33:17 117

转载 【ICCV-2019】ACNet:通过非对称卷积块增强CNN的核骨架 3*3卷积==>1*3卷积+3*1卷积=白给的精度提升

论文:https://arxiv.org/pdf/1908.03930v1.pdf代码:https://github.com/ShawnDing1994/ACN通过非对称卷积块增强CNN的核骨架摘要1.研究背景2. 相关工作2.1 非对称卷积2.2 CNN架构中的中性结构3. 方法3.1 公式3.2 利用卷积的可加性下面要介绍的论文发于ICCV2019,题为「ACNet:Strengthening the Kernel Skeletons for Powerful CNN via Asymmetri.

2021-04-05 20:50:45 369

原创 Non-local Neural Networks:非局部神经网络

Non-local Neural Networks:非局部神经网络Abstract1. Introduction2. Related WorkNon-local image processing.Graphical models.Abstract卷积运算和递归运算都是一次处理一个局部邻域的构造块。在本文中,我们将非本地操作作为一个通用的构建模块家族来描述,用于捕获长期依赖关系。受计算机视觉中经典非局部均值方法的启发,我们的非局部运算将一个位置的响应计算为所有位置特征的加权和。这个构建模块可以插入到许多计

2021-04-01 23:05:26 155

转载 pytorch中优化器与学习率衰减方法总结

PyTorch提供了十种优化器,在这里就看看都有哪些优化器。torch.optimtorch.optim是一个实现了各种优化算法的库。大部分常用的方法得到支持,并且接口具备足够的通用性,使得未来能够集成更加复杂的方法。如何使用optimizer为了使用torch.optim,你需要构建一个optimizer对象。这个对象能够保持当前参数状态并基于计算得到的梯度进行参数更新。构建为了构建一个Optimizer,你需要给它一个包含了需要优化的参数(必须都是Variable对象)的iterable。然

2021-03-30 20:15:55 1092

转载 pytorch必须掌握的的4种学习率衰减策略

原文:pytorch必须掌握的的4种学习率衰减策略1.指数衰减2. 固定步长衰减3. 多步长衰减4. 余弦退火衰减5. 上述4种学习率动态更新策略的说明梯度下降算法需要我们指定一个学习率作为权重更新步幅的控制因子,常用的学习率有0.01、0.001以及0.0001等,学习率越大则权重更新。一般来说,我们希望在训练初期学习率大一些,使得网络收敛迅速,在训练后期学习率小一些,使得网络更好的收敛到最优解。下图展示了随着迭代的进行动态调整学习率的4种策略曲线:上述4种策略为自己根据资料整理得到的衰减类型:指.

2021-03-29 21:15:56 232

转载 【PyTorch】利用Dataset和DataLoader产生自定义的训练数据,划分训练集和测试集

pytorch Dataset, DataLoader产生自定义的训练数据1. torch.utils.data.Dataset2. torch.utils.data.DataLoader3. 使用Dataset,DataLoader产生自定义训练数据3.1 自定义Dataset1. torch.utils.data.Datasetdatasets这是一个pytorch定义的dataset的源码集合。下面是一个自定义Datasets的基本框架,初始化放在__init__()中,其中__getitem__

2021-03-23 21:49:24 133

原创 Java数组拷贝的四种方法:循环赋值、System.arraycopy()、Arrays.copyOf()、Object.clone()

Java数组拷贝的四种方法循环赋值System.arraycopy()Arrays.copyOf()Object.clone()对象拷贝数组拷贝复制引用和复制对象的区别效率:System.arraycopy > clone > Arrays.copyOf > 循环赋值Java数组拷贝的四种方法:循环赋值:速度相对较慢System.arraycopy():浅拷贝Arrays.copyOf():或者Arrays.copyOfRange(),浅拷贝Object.clone()循

2021-03-21 16:40:51 55

转载 Vision Transformer 论文

https://openreview.net/pdf?id=YicbFdNTTyAN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALEAbstract1 Introduction1.1 NLP领域中的Transformer VS CV领域中的CNN1.2 Transformer向视觉领域的跨界融合2 模型和方法2.1 Vision Transformer(ViT)2.2 微调和更高分辨率3 实验3.1 模型3.2

2021-03-20 22:13:21 99

原创 C语言函数参数传递的两种方式:值传递和引用传递(包括整型变量和字符串变量)

C语言函数参数传递的两种方式:值传递和引用传递1 值传递1.1 实实在在的值传递1.2 指针传递2 引用传递3 字符串变量的函数传递与指针传递3.1 错误示范参考1 值传递值传递包括实实在在的值传递和指针传递,指针传递参数本质上是值传递的方式,它所传递的是一个地址值,传递的都是实参的一个拷贝。1.1 实实在在的值传递#include <iostream>#include <vector> using namespace std; void function(int

2021-03-18 11:33:53 183

转载 Transformer为何能闯入CV界秒杀CNN?

原文地址Transformer为何能闯入CV界秒杀CNN?1 长期依赖和计算效率之间的权衡取舍循环神经网络卷积神经网络的问题2 Transformer 横空出世Transformer 模型自注意力机制CV(计算机视觉)领域一直是引领机器学习的弄潮儿。近年来更是因为Transformers模型的横空出世而掀起了一阵腥风血雨。小编今天就带大家初步认识一下这位初来乍到的CV当红炸子鸡~本文主要介绍Transformers背后的技术思想,Transformers在计算机视觉领域的应用情况、最新动态以及该架构相

2021-03-12 10:39:56 129

原创 【天池赛事】零基础入门语义分割-地表建筑物识别 Task6:分割模型模型集成

【天池赛事】零基础入门语义分割-地表建筑物识别Task1:赛题理解与 baseline(3 天)– 学习主题:理解赛题内容解题流程– 学习内容:赛题理解、数据读取、比赛 baseline 构建– 学习成果:比赛 baseline 提交Task2:数据扩增方法(3 天)– 学习主题:语义分割任务中数据扩增方法– 学习内容:掌握语义分割任务中数据扩增方法的细节和使用– 学习成果:数据扩增方法的实践Task3:网络模型结构发展(3 天)– 学习主题:掌握语义分割模型的发展脉络.

2021-02-28 22:35:27 149

原创 【天池赛事】零基础入门语义分割-地表建筑物识别 Task5:模型训练与验证

【天池赛事】零基础入门语义分割-地表建筑物识别Task1:赛题理解与 baseline(3 天)– 学习主题:理解赛题内容解题流程– 学习内容:赛题理解、数据读取、比赛 baseline 构建– 学习成果:比赛 baseline 提交Task2:数据扩增方法(3 天)– 学习主题:语义分割任务中数据扩增方法– 学习内容:掌握语义分割任务中数据扩增方法的细节和使用– 学习成果:数据扩增方法的实践Task3:网络模型结构发展(3 天)– 学习主题:掌握语义分割模型的发展脉络.

2021-02-28 22:06:23 98

原创 【天池赛事】零基础入门语义分割-地表建筑物识别 Task4:评价函数与损失函数

【天池赛事】零基础入门语义分割-地表建筑物识别Task1:赛题理解与 baseline(3 天)– 学习主题:理解赛题内容解题流程– 学习内容:赛题理解、数据读取、比赛 baseline 构建– 学习成果:比赛 baseline 提交Task2:数据扩增方法(3 天)– 学习主题:语义分割任务中数据扩增方法– 学习内容:掌握语义分割任务中数据扩增方法的细节和使用– 学习成果:数据扩增方法的实践Task3:网络模型结构发展(3 天)– 学习主题:掌握语义分割模型的发展脉络.

2021-02-28 21:11:40 168

原创 【天池赛事】零基础入门语义分割-地表建筑物识别 Task3:网络模型结构发展

【天池赛事】零基础入门语义分割-地表建筑物识别Task1:赛题理解与 baseline(3 天)– 学习主题:理解赛题内容解题流程– 学习内容:赛题理解、数据读取、比赛 baseline 构建– 学习成果:比赛 baseline 提交Task2:数据扩增方法(3 天)– 学习主题:语义分割任务中数据扩增方法– 学习内容:掌握语义分割任务中数据扩增方法的细节和使用– 学习成果:数据扩增方法的实践Task3:网络模型结构发展(3 天)– 学习主题:掌握语义分割模型的发展脉络.

2021-02-27 17:20:48 191

原创 使用PyTorch和Albumentations进行数据增强与损失函数

数据扩增Part 1 数据读取与数据扩增图像读取数据扩增基于图像处理的数据扩增几何变换灰度和彩色空间变换添加噪声和滤波图像混合(Mixing images)随机搽除(Random erasing)基于深度学习的数据扩增使用PyTorch进行数据增强使用Albumentations进行数据增强Part 1 数据读取与数据扩增图像读取常用的图像读取方法:OpenCV-python、Pillow、matplotlib.image、scipy.misc、skimagePillow只提供最基础的数字图像处理

2021-02-26 16:22:18 168

共享单车骑行数据分析

Python数据分析实战项目-共享单车有效的解决了“走路累,公交挤,开车堵,打车贵”的苦恼。一夜之间,北上广深、甚至部分二线城市,共享单车大街小巷随处可见。

2020-11-26

基于PCA方法的ORL人脸识别及Python代码实现(包括ORL人脸数据)

PCA的理论知识已经有很多博客做了清晰的解释,主要概括为找到投影的面使得类间误差最大,转化为找到构建的协方差的特征值与特征向量,在新的投影方向(特征向量)上投影,构建数据库和待检索的人脸进行比对,得到相似度最高的人脸作为查询结果,本文使用ORL人脸数据库基于PCA方法实现人脸识别。

2020-12-17

lianjia.csv

通过编写python脚本(爬虫)从二手房交易数据网站上获取北京二手房数据集。该资源主要是介绍一个北京二手房数据分析的项目,目的是熟悉python数据分析的及可视化的一些常用方法。

2020-11-26

vue-dev-tools.zip

前端百花齐放的大环境下,Vue是一套用于构建用户界面的渐进式框架,在我们学习和开发Vue过程中,使用谷歌浏览器的vue插件可以提高我们的效率。给大家带来的是,谷歌浏览器的插件商店里vue官方提供的开发工具,可以使用crx插件安装包手动安装

2020-04-10

2018CCPC网络赛题解

2018中国大学生程序设计竞赛 - 网络选拔赛

2018-08-31

BP神经网络的学习

人工神经网络的学习 1.1 什么时候可以用神经网络? 1.2 分类还是回归?(classification or regression)

2018-10-26

attention_transformer_lecture_11.pdf

斯坦福-李飞飞《Attention and Transformer》总结

2021-05-09

Dark Reader扩展程序.zip

Dark Reader是一个护眼扩展程序,通过实时生成黑色主题,为每一个网站启用夜间模式。 Dark Reader反转明亮的颜色,使其网页内容具有高对比度并且在易于夜间阅读。Dark Reader扩展程序不仅仅是反映您访问的网站的颜色。由新的Chrome引擎功能提供支持,它使用特殊的智能方式将亮丽的盲人变成眼睛放松,高对比度,反光,黑暗主题,并且只是聪明的网页,这在晚上很容易阅读。使用这个扩展来照顾你的眼睛。现在用过滤器调整,字体设置和忽略列表!另外Dark Reader有提供几个调整项目给使用者自订,像是亮度、对比、灰度等,让你可以调整到最舒适的状态,甚至若你不爱全黑也不想太亮白,还能手动调整到介于中间值的暖色状态。有些网站不想套用的话,只要将网址加入排除清单中,就能在浏览这些特定网站时保持原状,使用上相当自由。

2020-03-29

From Attention to Transformer.pptx

From Attention to Transformer.pptx

2021-04-11

GCN_KGCN.pdf

图卷积神经网络在推荐系统的应用

2021-01-26

pytorch把MNIST数据集转换成图片和txt

pytorch把MNIST数据集转换成图片和txt

2021-02-03

奇异值分解矢量图.zip

奇异值分解(SVD)是一种矩阵因子分解方法,是线性代数的概念,但在统计学习中被广泛使用,成为其重要工具,其中主成分分析、潜在语义分析都用到奇异值分解。奇异值分解矢量图,直观地解释了完全奇异值分解和紧奇异值分解过程中,矩阵维度的变化过程

2020-11-19

【论文】基于深度学习的医学图像分割技术:全面调研

20页综述,共计171篇参考文献。对于有监督学习方法,本文从三个方面介绍:backbone选择,网络blocks的设计以及损失函数的改进;对于弱监督学习方法,本文从数据增广,迁移学习和交互式分割来介绍。

2020-11-13

LED显示屏软件

包含LED显示屏编程软件,设置参数方法,文字显示方式,时间日期显示等

2018-10-26

Xshell-6.0.0125p.zip

Xshell 是一个强大的安全终端模拟软件,它支持SSH1, SSH2, 以及Microsoft Windows 平台的TELNET 协议。Xshell 通过互联网到远程主机的安全连接以及它创新性的设计和特色帮助用户在复杂的网络环境中享受他们的工作。 Xshell可以在Windows界面下用来访问远端不同系统下的服务器,从而比较好的达到远程控制终端的目的。除此之外,其还有丰富的外观配色方案以及样式选择。

2020-05-03

Bootstrap.zip

# BootStrap前端框架 - 响应式布局:同一套页面可以兼容不同分辨率的设备 - 栅格系统:将一行平均分成12个格子,可以指定元素占几个格子 - 容器分类: - container:两边留白 - container-fluid:每一种设备都是100% - 设备分类: - xs 手机 - sm 平板 - md 笔记本 - lg 台式机

2020-04-10

紫芝的留言板

发表于 2020-01-02 最后回复 2020-01-02

请教一个问题,如何通过命令行窗口把数据输入到spm插件的GUI窗口?

发表于 2019-01-06 最后回复 2019-01-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除