二分·二分答案
在上一回和上上回里我们知道Nettle在玩《艦これ》,Nettle在整理好舰队之后终于准备出海捞船和敌军交战了。
在这个游戏里面,海域是N个战略点(编号1..N)组成,如下图所示
其中红色的点表示有敌人驻扎,猫头像的的点表示该地图敌军主力舰队(boss)的驻扎点,虚线表示各个战略点之间的航线(无向边)。
在游戏中要从一个战略点到相邻战略点需要满足一定的条件,即需要舰队的索敌值大于等于这两点之间航线的索敌值需求。
由于提高索敌值需要将攻击机、轰炸机换成侦察机,舰队索敌值越高,也就意味着舰队的战力越低。
另外在每一个战略点会发生一次战斗,需要消耗1/K的燃料和子弹。必须在燃料和子弹未用完的情况下进入boss点才能与boss进行战斗,所以舰队最多只能走过K条航路。
现在Nettle想要以最高的战力来进攻boss点,所以他希望能够找出一条从起始点(编号为1的点)到boss点的航路,使得舰队需要达到的索敌值最低,并且有剩余的燃料和子弹。
特别说明:两个战略点之间可能不止一条航线,两个相邻战略点之间可能不止一条航线。保证至少存在一条路径能在燃料子弹用完前到达boss点。
输入
第1行:4个整数N,M,K,T。N表示战略点数量,M表示航线数量,K表示最多能经过的航路,T表示boss点编号, 1≤N,K≤10,000, N≤M≤100,000
第2..M+1行:3个整数u,v,w,表示战略点u,v之间存在航路,w表示该航路需求的索敌值,1≤w≤1,000,000。
输出
第1行:一个整数,表示舰队需要的最小索敌值。
样例输入
5 6 2 5
1 2 3
1 3 2
1 4 4
2 5 2
3 5 5
4 5 3
样例输出
3
解题思路:
在这个题目中我们需要找的是路径最长边。比如存在一条路径{1, p[1], p[2], ... , p[j], T}, p = {p[1],p[2],...,p[j]]}, j < K,我们需要找的为 D(P) = Max{w(1, p[1]), w(p[j], T), Max{w(p[i], p[i+1]) | 1 <= i < j} }。则这道题的结果为找出所有从1到T的路径P',求的Min{D(P')}。由于给定的图存在环,所以要枚举出所有1到T的路径是很难的,因此我们需要换个角度去思考这个问题。
这道题结果有什么特殊性?
不妨假设答案为j,如果舰队满足j以上的索敌值,那么一定存在至少一条路径可以从1到T,并且路径数量小于K。
并且如果舰队索敌值小于j,则在K条路径的条件下一定无法从1到T。否则j就不是最小值了。
则对于索敌值满足这样一个关系:
可以看出,j值刚好是是否存在路径的一个分界线。如果我们枚举一个j':
-
j'<j,无法到达boss点
-
j'>=j,一定可以到达boss点
不妨设f(x) = true(索敌值为x时,可以达到boss点), false(索敌值为x时,不能达到boss点)
1.从小到大枚举j',当出现第一个f(k')=true时,j'=j。需要枚举j次,若j很大时,该算法很低效。
2.二分枚举,设定枚举区间[L,R],满足f(L)=false, f(R)=true。每次取中间值Mid=(L+R)/2,若f(Mid)=true,令R=Mid;否则令L=Mid。
当L+1=R时,可以知道R即为我们需要寻找的j。
AC代码:
#include <bits/stdc++.h>
using namespace std;
struct edge{
int x,w;
};
int n,m,k,t;
vector<edge> v[10005];
int vis[10005];
bool bfs(int dis){
memset(vis,0,sizeof(vis));
queue<int> q;
q.push(1);
while(!q.empty()){
int cur = q.front();
q.pop();
if(cur == t)
return true;
if(vis[cur] == k)
continue;
int l = v[cur].size();
for(int i = 0; i < l; i++){
int tmp = v[cur][i].x;
if(vis[tmp] || v[cur][i].w > dis)
continue;
vis[tmp] = vis[cur]+1;
q.push(tmp);
}
}
return false;
}
int main(){
while(~scanf("%d%d%d%d",&n,&m,&k,&t)){
int a,b,c,maxn = 0;
for(int i = 0; i < m; i++){
scanf("%d%d%d",&a,&b,&c);
edge tmp;
tmp.x = b;tmp.w = c;
v[a].push_back(tmp);
tmp.x = a;
v[b].push_back(tmp);
maxn = max(maxn,c);
}
int mid,l = 0,r = maxn;
while(l <= r){
mid = (l+r)>>1;
if(bfs(mid))
r = mid-1;
else
l = mid+1;
}
printf("%d\n",l);
}
return 0;
}