hihoCoder 1139 二分·二分答案

二分·二分答案

在上一回和上上回里我们知道Nettle在玩《艦これ》,Nettle在整理好舰队之后终于准备出海捞船和敌军交战了。
在这个游戏里面,海域是N个战略点(编号1..N)组成,如下图所示

其中红色的点表示有敌人驻扎,猫头像的的点表示该地图敌军主力舰队(boss)的驻扎点,虚线表示各个战略点之间的航线(无向边)
在游戏中要从一个战略点到相邻战略点需要满足一定的条件,即需要舰队的索敌值大于等于这两点之间航线的索敌值需求。
由于提高索敌值需要将攻击机、轰炸机换成侦察机,舰队索敌值越高,也就意味着舰队的战力越低。
另外在每一个战略点会发生一次战斗,需要消耗1/K的燃料和子弹。必须在燃料和子弹未用完的情况下进入boss点才能与boss进行战斗,所以舰队最多只能走过K条航路。
现在Nettle想要以最高的战力来进攻boss点,所以他希望能够找出一条从起始点(编号为1的点)到boss点的航路,使得舰队需要达到的索敌值最低,并且有剩余的燃料和子弹。

特别说明:两个战略点之间可能不止一条航线,两个相邻战略点之间可能不止一条航线。保证至少存在一条路径能在燃料子弹用完前到达boss点。

输入

第1行:4个整数N,M,K,T。N表示战略点数量,M表示航线数量,K表示最多能经过的航路,T表示boss点编号, 1≤N,K≤10,000, N≤M≤100,000
第2..M+1行:3个整数u,v,w,表示战略点u,v之间存在航路,w表示该航路需求的索敌值,1≤w≤1,000,000。

输出

第1行:一个整数,表示舰队需要的最小索敌值。

样例输入

5 6 2 5
1 2 3
1 3 2
1 4 4
2 5 2
3 5 5
4 5 3

样例输出

3

解题思路:

在这个题目中我们需要找的是路径最长边。比如存在一条路径{1, p[1], p[2], ... , p[j], T}, p = {p[1],p[2],...,p[j]]}, j < K,我们需要找的为 D(P) = Max{w(1, p[1]), w(p[j], T), Max{w(p[i], p[i+1]) | 1 <= i < j} }。则这道题的结果为找出所有从1到T的路径P',求的Min{D(P')}。由于给定的图存在环,所以要枚举出所有1到T的路径是很难的,因此我们需要换个角度去思考这个问题。

这道题结果有什么特殊性?
不妨假设答案为j,如果舰队满足j以上的索敌值,那么一定存在至少一条路径可以从1到T,并且路径数量小于K。
并且如果舰队索敌值小于j,则在K条路径的条件下一定无法从1到T。否则j就不是最小值了。
则对于索敌值满足这样一个关系:

可以看出,j值刚好是是否存在路径的一个分界线。如果我们枚举一个j':

  • j'<j,无法到达boss点

  • j'>=j,一定可以到达boss点

则如何快速的找到这个分界线j,就是解决这道题目的关键。

不妨设f(x) = true(索敌值为x时,可以达到boss点), false(索敌值为x时,不能达到boss点)
1.从小到大枚举j',当出现第一个f(k')=true时,j'=j。需要枚举j次,若j很大时,该算法很低效。
2.二分枚举,设定枚举区间[L,R],满足f(L)=false, f(R)=true。每次取中间值Mid=(L+R)/2,若f(Mid)=true,令R=Mid;否则令L=Mid。
当L+1=R时,可以知道R即为我们需要寻找的j。

AC代码:

#include <bits/stdc++.h>
using namespace std;

struct edge{
    int x,w;
};
int n,m,k,t;
vector<edge> v[10005];
int vis[10005];

bool bfs(int dis){
    memset(vis,0,sizeof(vis));
    queue<int> q;
    q.push(1);
    while(!q.empty()){
        int cur = q.front();
        q.pop();
        if(cur == t)
            return true;
        if(vis[cur] == k)
            continue;
        int l = v[cur].size();
        for(int i = 0; i < l; i++){
            int tmp = v[cur][i].x;
            if(vis[tmp] || v[cur][i].w > dis)
                continue;
            vis[tmp] = vis[cur]+1;
            q.push(tmp);
        }
    }
    return false;
}

int main(){
    while(~scanf("%d%d%d%d",&n,&m,&k,&t)){
        int a,b,c,maxn = 0;
        for(int i = 0; i < m; i++){
            scanf("%d%d%d",&a,&b,&c);
            edge tmp;
            tmp.x = b;tmp.w = c;
            v[a].push_back(tmp);
            tmp.x = a;
            v[b].push_back(tmp);
            maxn = max(maxn,c);
        }
        int mid,l = 0,r = maxn;
        while(l <= r){
            mid = (l+r)>>1;
            if(bfs(mid))
                r = mid-1;
            else
                l = mid+1;
        }
        printf("%d\n",l);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值