Codeforces 567A Lineland Mail

Lineland Mail

题目链接:

http://codeforces.com/problemset/problem/567/A

官方题解:

One can notice that the maximum cost of sending a letter from i'th city is equal to maximum of distances from i'th city to first city and fromi'th city to last (max(abs(xi - x0), abs(xi - xn - 1)). On the other hand, the minimum cost of sending a letter will be the minimum of distances between neighboring cities (i - 1'th and i + 1'th cities), more formally, min(abs(xi - xi - 1), abs(xi - xi + 1). For each city, except the first and the last this formula is correct, but for them formulas are (abs(xi - xi + 1)) and (abs(xi - xi - 1)) respectively.

AC代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;

typedef long long ll;
ll a[100005];

int main(){
    int n;
    while(~scanf("%d",&n)){
        for(int i = 0; i < n; i++)
            scanf("%lld",&a[i]);
        printf("%lld %lld\n",a[1]-a[0],a[n-1]-a[0]);
        for(int i = 1; i < n-1; i++)
            printf("%lld %lld\n",min(a[i]-a[i-1],a[i+1]-a[i]),max(a[i]-a[0],a[n-1]-a[i]));
        printf("%lld %lld\n",a[n-1]-a[n-2],a[n-1]-a[0]);
    }
    return 0;
}




### 关于 Codeforces Problem 1804A 的解决方案 Codeforces 是一个广受欢迎的在线编程竞赛平台,其中问 1804A 可能涉及特定算法或数据结构的应用。尽管未提供具体目描述,但通常可以通过分析输入输出样例以及常见解法来推导其核心逻辑。 #### 目概述 假设该问是关于字符串处理、数组操作或其他基础算法领域的内容,则可以采用以下方法解决[^2]: 对于某些初学者来说,遇到不熟悉的语言(如 Fortran),可能会感到困惑。然而,在现代竞赛环境中,大多数情况下会使用更常见的语言(C++、Python 或 Java)。因此,如果目提及某种神秘的语言,可能只是为了增加趣味性而非实际需求。 #### 解决方案思路 以下是基于一般情况下的潜在解答方式之一: ```cpp #include <bits/stdc++.h> using namespace std; int main(){ int t; cin >> t; // 输入测试用例数量 while(t--){ string s; cin >> s; // 获取每组测试数据 // 假设这里需要执行一些简单的变换或者判断条件... bool flag = true; // 初始化标志位为真 for(char c : s){ if(c != 'a' && c != 'b'){ flag = false; break; } } cout << (flag ? "YES" : "NO") << "\n"; // 输出结果 } return 0; } ``` 上述代码片段展示了一个基本框架,适用于许多入门级字符串验证类问。当然,这仅作为示范用途;真实场景下需依据具体要求调整实现细节。 #### 进一步探讨方向 除了官方解外,社区论坛也是获取灵感的好地方。通过阅读他人分享的经验教训,能够加深对该类型习的理解程度。同时注意积累常用技巧并灵活运用到不同场合之中[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值