Ultra-QuickSort
题目链接:
http://poj.org/problem?id=2299
解题思路:
树状数组实际上就是一个数组,只不过它的每个元素保存了跟原来数组的一些元素相关的结合值。
若A为原数组,定义数组C为树状数组。C数组中元素C[ i ]表示A[ i –lowbit( i ) + 1]至A[ i ]的结合值。
lowbit(i)是i的二进制中最后一个不为零的位数的2次方,可以这样计算
lowbit(i)=x&(-x)
当想要查询一个sum(n)时,可以依据如下算法即可:
step1: 令sum = 0,转第二步;
step2: 假如n <= 0,算法结束,返回sum值,否则sum = sum + Cn,转第三步;
step3: 令n = n – lowbit(n),转第二步。
n = n – lowbit(n)这一步实际上等价于将n的二进制的最后一个1减去。而n的二进制里最多有log(n)个1,所以查询效率是log(n)的。
修改一个节点,必须修改其所有祖先,最坏情况下为修改第一个元素,最多有log(n)的祖先。所以修改算法如下(给某个结点i加上x):
step1: 当i > n时,算法结束,否则转第二步;
step2: Ci = Ci + x, i = i + lowbit(i)转第一步。
i = i +lowbit(i)这个过程实际上也只是一个把末尾1补为0的过程。
求逆序的思路:
可以把数一个个插入到树状数组中, 每插入一个数, 统计比他小的数的个数,对应的逆序为 i- getsum( data[i] ),其中 i 为当前已经插入的数的个数, getsum( data[i] )为比 data[i] 小的数的个数,i- getsum( data[i] ) 即比 data[i] 大的个数, 即逆序的个数。最后需要把所有逆序数求和,就是在插入的过程中边插入边求和。
AC代码(树状数组):
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N = 500005;
int n;
struct node{
int pos,val;
}no[N];
int reflect[N];
int c[N];
bool cmp(const node &a,const node &b){
return a.val < b.val;
}
int lowbit(int x){
return x&(-x);
}
void update(int x){
while(x <= n){
c[x] += 1;
x += lowbit(x);
}
}
int sum(int x){
int ans = 0;
while(x){
ans += c[x];
x -= lowbit(x);
}
return ans;
}
int main(){
while(scanf("%d",&n),n){
for(int i = 1; i <= n; i++){
scanf("%d",&no[i].val);
no[i].pos = i;
}
sort(no+1,no+n+1,cmp);
for(int i = 1; i <= n; i++)
reflect[no[i].pos] = i;//离散化
for(int i = 1; i <= n; i++)
c[i] = 0;//初始化
ll ans = 0;
for(int i = 1; i <= n; i++){
update(reflect[i]);
ans += (ll)(i - sum(reflect[i]));
}
printf("%lld\n",ans);
}
return 0;
}
解题思路:
归并排序是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为
* 若干个子序列,每个子序列是有序的,然后再把有序的子序列合并为整体有序序列
* 归并排序是分治算法的一个典型的应用,而且是稳定的一种排序,这题利用归并排序
* 的过程中,计算每个小区间的逆序数,进而得到大区间的逆序数。那么,问题就解决了。
即:对于数列[l, mid] [mid + 1, r]的合并,i 从l开始循环,j从mid + 1开始循环,如果遇到a[i] > a[j] 则出现逆序,可以将a[j]放入辅助数组,同时j++,那么和a[j]逆序的数就有mid-i+1个,因为序列是有序的[i, mid]的所有的数都是大于a[j]的。代码如下。有重温了归并的写法与思想。。
AC代码(归并排序):
#include <iostream>
#include <cstdio>
#include <algorithm>
#define INF 0xfffffff
using namespace std;
typedef long long ll;
const int N = 500005;
int n;
int a[N],L[N],R[N];
ll ans;
void Merge(int a[],int l,int mid,int r){
int n1 = mid-l+1;
int n2 = r-mid;
int i,j,k;
for(i = 1; i <= n1; ++i)
L[i] = a[l+i-1];
for(i = 1; i <= n2 ; ++i)
R[i] = a[mid+i];
L[n1+1] = INF;
R[n2+1] = INF;
i = 1;
j = 1;
for(k = l; k <= r; ++k){
if(L[i] <= R[j]){
a[k] = L[i];
i++;
}
else{
a[k] = R[j];
j++;
ans += (ll)(n1-i+1);
}
}
}
void Merge_sort(int a[],int l,int r){
if(l < r){
int mid = (l+r)>>1;
Merge_sort(a,l,mid);
Merge_sort(a,mid+1,r);
Merge(a,l,mid,r);
}
}
int main(){
while(scanf("%d",&n),n){
for(int i = 1; i <= n; ++i)
scanf("%d",&a[i]);
ans = 0;
Merge_sort(a,1,n);
printf("%lld\n",ans);
}
return 0;
}