POJ 2932 Coneology(平面扫描)

本文详细阐述了解决特定平面几何问题的方法,即在一组两两不相交的圆中,找出那些位于最外围且不被其他圆包含的圆。通过构建扫描线并维护与之相交的最外层圆的集合,实现高效的查找过程。算法通过枚举每个圆的左右端点,并在扫描线移动过程中更新最外层圆的集合,最终输出这些满足条件的圆。
摘要由CSDN通过智能技术生成

题目链接:

http://poj.org/problem?id=2932

解题思路:

题目大意:

平面上有n个两两没有公共点的圆,i号圆的圆心在(x[i],y[i]),半径为r[i]。求所有最外层的,即不包含于其他圆内部的圆。

算法思想:

因为题目内的圆不存在相交的情况, 所以直接储存每个圆的左端点和右端点的x坐标,然后从左扫到右。我们在从左向右平移与y轴

平行的直线的同时,维护与扫面线相交的最外层的圆的集合。从左到右移动中,只有扫面线移动到圆的左右两端时,圆与扫描线的

相交关系才会发生变化,因此我们先将所有这样的x坐标枚举出来并排好序。如果满足是最外面的圆,就储存在set里面。如何判断

满足,就是对每一个x,如果是左端点的x坐标就来判断其对应的圆,是否是在set中储存的圆内,如果不是 ,就存到set中。如果是

右端点的x坐标,就pop出该圆。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;

const int N = 40005;
int n;
double x[N],y[N],r[N];

bool inside(int i, int j){
    double dx = x[i]-x[j];
    double dy = y[i]-y[j];
    return dx*dx+dy*dy <= r[j]*r[j];
}

void solve(){
    vector<pair<double,int> > events;//圆的左右两端的x坐标
    for(int i = 0; i < n; i++){
        events.push_back(make_pair(x[i]-r[i],i));//圆的左端
        events.push_back(make_pair(x[i]+r[i],i+n));//圆的右端
    }
    sort(events.begin(), events.end());
    //平面扫描
    set<pair<double, int> > outers;//与扫面线相交的最外层的圆的集合
    vector<int>ans;//最外层圆的列表
    for(int i = 0; i < events.size(); i++){
        int id = events[i].second % n;
        if(events[i].second < n){//扫描到左端
            set<pair<double, int> >::iterator it = outers.lower_bound(make_pair(y[id],id));
            if(it != outers.end() && inside(id, it->second)) continue;
            if(it != outers.begin() && inside(id, (--it)->second)) continue;
            ans.push_back(id);
            outers.insert(make_pair(y[id], id));
        }
        else{//扫描到右端
            outers.erase(make_pair(y[id], id));
        }
    }
    sort(ans.begin(), ans.end());

    int len = ans.size();
    printf("%d\n", len);
    for(int i = 0; i < len; i++){
        printf("%d%c",ans[i]+1,i+1 == len?'\n' : ' ');
    }
}

int main(){
    while(~scanf("%d",&n)){
        for(int i = 0; i < n; i++)
            scanf("%lf%lf%lf", &r[i],&x[i],&y[i]);
        solve();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值