LightOJ 1356 Aladdin and the Flying Carpet(唯一分解定理)

Aladdin and the Flying Carpet

解题思路:

题目大意:

给一对数字 a,b  ,a是一个长方形的面积,问有多少种整数的边的组合可以组成面积为a的长方形,要求最短的边不得小于b。

其实,就是求区间[b, a] 内的 a 的约数对的个数。满足c*d==a且c>=b且d>=b的c,d二元组对数,(c,d)和(d,c)属于同一种情况。

算法思想:

根据唯一分解定理,先将a唯一分解,则a的所有正约数的个数为num = (1 + a1) * (1 + a2) *...(1 + ai),这里的ai是素因子的指数,见唯一分解定理,因

为题目说了不会存在c==d的情况,因此num要除2,去掉重复情况,然后枚举小于b的a的约数,拿num减掉就可以了。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
using namespace std;

typedef long long ll;
int vis[1000005];
vector<int> prime;

void get_prime(){
    memset(vis,0,sizeof(vis));
    prime.clear();
    for(int i = 2; i <= 1000000; i++){
        int tt = 1000000/i;
        for(int j = 2; j <= tt; j++)
            vis[i*j] = 1;
    }
    for(int i = 2; i <= 1000000; i++){
        if(!vis[i])
            prime.push_back(i);
    }
}

ll solve(ll n){
    int l = prime.size();
    ll ans = 1;
    for(int i = 0; i < l && prime[i] <= sqrt(n*1.0); i++){
        int t = 0;
        while(n%prime[i] == 0){
            t++;
            n /= prime[i];
        }
        ans *= (t+1);
    }
    if(n > 1)
        ans *= 2;
    return ans;
}

int main(){
    get_prime();
    int T,t = 1;
    scanf("%d",&T);
    while(T--){
        ll a,b;
        scanf("%lld%lld",&a,&b);
        if(a < b*b){
             printf("Case %d: 0\n",t++);
            continue;
        }
        ll ans = solve(a);
        ans /= 2;
        for(int i = 1; i < b; i++){
            if(a%i == 0)
                ans--;
        }
        printf("Case %d: %lld\n",t++,ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值