Aladdin and the Flying Carpet
解题思路:
题目大意:
给一对数字 a,b ,a是一个长方形的面积,问有多少种整数的边的组合可以组成面积为a的长方形,要求最短的边不得小于b。
其实,就是求区间[b, a] 内的 a 的约数对的个数。满足c*d==a且c>=b且d>=b的c,d二元组对数,(c,d)和(d,c)属于同一种情况。
算法思想:
根据唯一分解定理,先将a唯一分解,则a的所有正约数的个数为num = (1 + a1) * (1 + a2) *...(1 + ai),这里的ai是素因子的指数,见唯一分解定理,因
为题目说了不会存在c==d的情况,因此num要除2,去掉重复情况,然后枚举小于b的a的约数,拿num减掉就可以了。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
int vis[1000005];
vector<int> prime;
void get_prime(){
memset(vis,0,sizeof(vis));
prime.clear();
for(int i = 2; i <= 1000000; i++){
int tt = 1000000/i;
for(int j = 2; j <= tt; j++)
vis[i*j] = 1;
}
for(int i = 2; i <= 1000000; i++){
if(!vis[i])
prime.push_back(i);
}
}
ll solve(ll n){
int l = prime.size();
ll ans = 1;
for(int i = 0; i < l && prime[i] <= sqrt(n*1.0); i++){
int t = 0;
while(n%prime[i] == 0){
t++;
n /= prime[i];
}
ans *= (t+1);
}
if(n > 1)
ans *= 2;
return ans;
}
int main(){
get_prime();
int T,t = 1;
scanf("%d",&T);
while(T--){
ll a,b;
scanf("%lld%lld",&a,&b);
if(a < b*b){
printf("Case %d: 0\n",t++);
continue;
}
ll ans = solve(a);
ans /= 2;
for(int i = 1; i < b; i++){
if(a%i == 0)
ans--;
}
printf("Case %d: %lld\n",t++,ans);
}
return 0;
}