POJ 2452 Sticks Problem(RMQ+二分)

Sticks Problem

题目链接:

http://poj.org/problem?id=2452

解题思路:

题目大意:

给你一组数a[n],求满足a[i] < a[k] < a[j] (i <= k <= j)的最大的j-i。 

算法思想:

RMQ + 二分。 

枚举i,利用二分求出a[i]右边第一个小于a[i]的数的位置k, 

再求出[i, k]中最大值的位置j,若a[j] > a[i],则更新结果。 

AC代码:

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;

const int maxn = 50005;
int n,len[maxn];
// 分别存储的是最大值和最小值的下标
int minl[maxn][20], maxl[maxn][20];

int _max(int l, int r){
    if(len[l] > len[r])
        return l;
    return r;
}

int _min(int l, int r){
    if(len[l] < len[r])
        return l;
    return r;
}

void init_RMQ(){
    for(int i = 1; i <= n; ++i)
        minl[i][0] = maxl[i][0] = i;
    int l = int(log((double)n)/log(2.0));
    for(int j = 1; j <= l; j++){
        for(int i = 1; i + (1 << (j-1)) - 1 <= n;++i){
            maxl[i][j] = _max(maxl[i][j-1], maxl[i + (1 << (j-1))][j-1]);
            minl[i][j] = _min(minl[i][j-1], minl[i + (1 << (j-1))][j-1]);
        }
    }
}

int maxRMQ(int l, int r){
    int k = (int)(log(double(r) - l + 1) / log(2.0));
    return _max(maxl[l][k], maxl[r - (1<<k) + 1][k]);
}

int minRMQ(int l, int r){
    int k = (int)(log(double(r) - l + 1) / log(2.0));
    return _min(minl[l][k], minl[r - (1<<k) + 1][k]);
}

int bsearch(int x, int l, int r){
    while(l <= r){
        if(l == r)
            return l;
        int m = (l + r) >> 1;
        if (len[x] < len[minRMQ(l, m)])
            l = m + 1;
        else r = m;
    }
}

void solve(){
    int ans = 0;
    for(int i = 1; i + ans < n; ++i){
        int r = bsearch(i, i + 1, n);
        int k = maxRMQ(i, r);
        if(len[k] > len[i])
            ans = max(ans, k - i);
    }
    if(ans == 0)
        printf("-1\n");
    else
        printf("%d\n",ans);
}

int main(){
    while(~scanf("%d",&n)){
        for(int i = 1; i <= n; ++i)
            scanf("%d",&len[i]);
        init_RMQ();
        solve();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值