# Forever 0.5

Description

Given an integer N, your task is to judge whether there exist N points in the plane such that satisfy the following conditions:

1. The distance between any two points is no greater than 1.0.

2. The distance between any point and the origin (0,0) is no greater than 1.0.

3. There are exactly N pairs of the points that their distance is exactly 1.0.

4. The area of the convex hull constituted by these N points is no less than 0.5.

5. The area of the convex hull constituted by these N points is no greater than 0.75.

Input

The first line of the date is an integer T, which is the number of the text cases.

Then T cases follow, each contains an integer N described above.

1 <= T <= 100, 1 <= N <= 100

Output

For each case, output “Yes” if this kind of set of points exists, then output N lines described these N points with its coordinate. Make true that each coordinate of your output should be a real number with AT MOST 6 digits after decimal point.

Your answer will be accepted if your absolute error for each number is no more than 10-4.

Otherwise just output “No”.

See the sample input and output for more details.

Sample Input

3235

Sample Output

NoNoYes0.000000 0.525731-0.500000 0.162460-0.309017 -0.4253250.309017 -0.4253250.500000 0.162460

Hint

This problem is special judge.

## 解题思路：

1.任意两点的距离≤ 1.0

2.每个点与原点的距离≤1.0

3.有N对点间的距离=1.0

4.N个点形成的面积≥0.5且≤0.75

## AC代码：

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;

const double pi = acos(-1.0);

int main(){
int T;
scanf("%d",&T);
while(T--){
int n;
scanf("%d",&n);
if(n < 4)
puts("No");
else{
puts("Yes");
printf("%.6lf %.6lf\n",0.0,0.0);
printf("%.6lf %.6lf\n",1.0,0.0);
printf("%.6lf %.6lf\n",0.5,sqrt(3.0)/2.0);
double angle;
for(int i = 1; i <= n-3; ++i){
angle = (pi/3.0/(n-2))*i;
double x = cos(angle);
double y = sqrt(1-x*x);
printf("%.6lf %.6lf\n",x,y);
}
}
}
return 0;
}

#### FZU 2140 Forever 0.5（找规律，几何）

2016-04-16 10:33:31

#### FZU 2140 Forever 0.5 （几何_思维）

2016-04-16 11:50:51

#### fzu-2140 Forever 0.5

2017-08-12 13:26:17

#### 【构造】 FZU 2140 Forever 0.5

2014-12-03 19:52:49

#### FZU 2140 Forever 0.5

2018-04-14 19:57:41

#### Forever 0.5 FZU - 2140

2018-04-14 15:33:57

#### FZU 2140 Forever 0.5

2016-04-14 21:07:47

#### FZU 2140 Forever 0.5

2016-04-19 22:02:46

#### FZU 2140 Forever 0.5

2015-05-02 09:25:11

#### Forever 0.5 FZU - 2140 (思维+计算几何+构造)

2018-04-14 15:37:53

## 不良信息举报

FZU 2140 Forever 0.5（构造）