使用AutoKeras2.0的AutoModel进行结构化数据回归预测

1、First of All: Read The Fucking Source Code

import autokeras as ak
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error


# 生成数据集
np.random.seed(42)
x = np.random.rand(1000, 10)  # 生成1000个样本,每个样本有10个特征
y = x.dot([0.5, -1.5, 2.0, -0.8, 1.2, -0.3, 0.7, -1.1, 0.4, -0.6]) + 3.0  # 生成目标变量

# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42)


input_node = ak.Input()
output_node = ak.DenseBlock()(input_node)  # 数值特征处理层
output_node = ak.RegressionHead()(output_node)


# 初始化AutoModel,指定为回归任务
regressor = ak.AutoModel(
    inputs=input_node,  # 指定输入节点
    outputs=output_node,  # 指定输出节点
    overwrite=True,  # 覆盖之前的搜索结果
    max_trials=2  # 最大尝试次数
)

# 训练模型
regressor.fit(x_train, y_train, epochs=10)

# 评估模型
predictions = regressor.predict(x_test)
mse = mean_squared_error(y_test, predictions)
print('Mean Squared Error: {:.2f}'.format(mse))

# 显示最佳模型信息
model = regressor.export_model()
model.summary()

 注:以上基于AutoKeras 2.0版本回归测试的例子,特别使用了通用的AutoModel的写法,其1.1版本不支持。

2、代码结构简介

AutoKeras是一个基于Keras的自动机器学习库,它能够自动搜索最优的神经网络架构。上述为一个简单的回归任务示例代码,主要包含以下部分:

  1. 生成模拟数据集并进行训练/测试集划分
  2. 定义AutoKeras的输入输出节点
  3. ‌配置并训练AutoModel
  4. ‌预测并计算均方误差
  5. ‌查看最佳模型结构

3、AutoModel输入输出说明

input_node = ak.Input()
output_node = ak.DenseBlock()(input_node)  # 数值特征处理层
output_node = ak.RegressionHead()(output_node)

输入部分:

  • input_node = ak.Input() 创建输入节点
  • 无需指定输入形状,AutoKeras会自动推断

处理层部分:

  • DenseBlock() 处理数值特征
  • 通过函数式API连接:output_node = ak.DenseBlock()(input_node)

输出部分:

  • RegressionHead() 指定回归任务
  • 同样使用函数式API连接

AutoModel配置:

  1. inputs参数接收输入节点
  2. outputs参数接收输出节点

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

piaopiaolanghua

感谢老板鼓励~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值