题136.只出现一次的数字
题意
给定一个 非空 整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
要求
你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?
解题
本题的要求很简单,就是找到数组中唯一的单个的数,但要求比较重要,一个是 线性时间复杂度 ,另一个是 不使用额外空间
首先想到的就是 暴力法 ,是用两个循环,当找到一个第一次出现且后面没有相同数的数,就退出循环,输出该值,这样的做法的问题在于时间复杂度达到了O( n 2 n^2 n2),不符合要求。
另一种方法是新建个哈希表,用消消乐的想法,没碰到过的数存到哈希表,出现重复的就消掉,直至只留一个值。但这样就不满足 不使用额外的空间 的要求。
为了同时满足这两个要求,可以采用逐个元素做 或运算 的方式,两个相同的数做或运算就会消除,这样最后保留下来的就是单个的数。
for i in range(1,len(nums)):
nums[i]=nums[i]^nums[i-1]
return nums[-1]
题141.环形链表
题意
给定一个链表,判断链表中是否有环。
如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。
如果链表中存在环,则返回 true 。 否则,返回 false 。
进阶:
你能用 O(1)(即,常量)内存解决此问题吗?
解题
题目中加了个 pos, 有点绕,其实没什么用。
解题直接想到的方法就是做遍历,用一个 list 来存储遍历过的元素:
- 如果新遍历到的元素出现在了 list 中,说明有环,返回 True
- 如果没有出现重复的元素,遍历结束后默认返回 False
代码比较简单,就省略了,这样做的问题是没达到 进阶 要求,空间复杂度为 O(n)
解决方法就是 快慢指针, 快指针每次走两步,慢指针每次走一步
解题思路也很简单,如果链表中有环,那么快慢指针总会相遇;如果没有,那么遍历会结束,输入默认的 False,所以可以用快指针作为遍历结束的标记。
if not head:
return False
slow=fast=head
while fast.next and fast.next.next:
fast=fast.next.next
slow=slow.next
if slow==fast:
return True
return False
142.环形链表 II
题意
给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意,pos 仅仅是用于标识环的情况,并不会作为参数传递到函数中。
说明: 不允许修改给定的链表。
进阶:
你是否可以使用 O(1) 空间解决此题?
解题
本题还是用快慢指针的方法解决,快指针每次走两步,慢指针每次走一步。
首先我们需要明确一点,就是当慢指针进环后,还没有走完第一圈,快指针就赶上它了。
证明:
假设慢指针入环时,快指针相对入环口走了 a 步,而后慢指针走了 b 步与快指针相遇,环的长度为 c,那么我们可以得到
a+2b=b+nc (n 为快指针多走的圈数)
进而得到 a+b=nc
我们可以看出,以慢指针为参照物,那么快指针实际上是以 1 的速度前进,它必然会追上慢指针,它第一次追上的时候多走的路程一定是一圈,不可能是两圈。
因为如果是两圈的话,相当于跳过了一次,而刚刚提到快指针的相对步速是 1,是不可能跳过的。
所以此处 n为1 ,那么有 a+b=c --> b<c
即第一次相遇时,慢指针还没有走完第一圈
以下图为例:
图中 a表示入环前的距离,b+c为环的长度,绿点为两个指针相遇的地方,那么我们可以得到,a+b+n(b+c)=2(a+b)
进而可以得到 a=c+(n-1)(b+c),这时再从头部出发一个指针,当它走了c+(n-1)(b+c) 步时到达入环口,所以定义一个指针,让他和慢指针同时以 1 的速度移动,这样二者会在入环口相遇。
fast=slow=head
while True:
if not (fast and fast.next):
return
fast,slow=fast.next.next,slow.next
if fast==slow:
break
fast=head
while fast!=slow:
fast,slow=fast.next,slow.next
return fast