ARC098F Donation

题意

给出一个 N N N个点 M M M条边的无向连通图,每个点的标号为 1 1 1 n n n, 且有两个权值 A i , B i A_i,B_i Ai,Bi.第 i i i条边连接了点 u i u_i ui v i v_i vi.

最开始时你拥有一定数量的钱,并且可以选择这张图上的任意一个点作为起始点,之后你从这个点开始沿着给定的边遍历这张图。每当你到达一个点 v v v时,你必须拥有至少 A v A_v Av元。而当你到达了这个点后,你可以选择向它捐献 B v B_v Bv元(当然也可以选择不捐献),当然,你需要保证在每次捐献之后自己剩余的钱 ≥ 0 \geq 0 0

你需要对所有的 n n n个点都捐献一次,求你一开始至少需要携带多少钱。

数据范围

  • 1 ≤ N ≤ 1 0 5 1\leq N\leq 10^5 1N105
  • N − 1 ≤ M ≤ 1 0 5 N-1\leq M\le 10^5 N1M105
  • 1 ≤ A i , B i ≤ 1 0 9 1\leq A_i,B_i\leq 10^9 1Ai,Bi109
  • 1 ≤ u i < v i ≤ N 1\leq u_i<v_i\leq N 1ui<viN
  • 保证题目给出的图联通

输入格式

第一行两个正整数 N , M N,M N,M.

接下来 N N N行每行两个正整数 A i , B i A_i,B_i Ai,Bi.

接下来 M M M行每行两个正整数 u i , v i u_i,v_i ui,vi

输出格式

一行一个整数,表示一开始你需要携带的最少钱数。

思路

正着做搞了半天没懂,从反着做的角度来搞好做多了。

反着做的题意:假设你经过 u u u点后可以领取 B u B_u Bu,要求离开此点时身上金额不小于 A u A_u Au,要求对于所有点都领取一次,问最后身上金钱的最小值。

因为领取的总金额是一个定值,所以我们也可以认为是一开始携带金钱的最小值。

显然第一次到达 u u u点就领取一定不劣。于是就变成了:第一次到达点 u u u时你的金额不能小于 A u − B u A_u-B_u AuBu,而你身上的钱是单调不降的,所以我们也可以说你到达点 u u u时你的金额不能小于 A u − B u A_u-B_u AuBu

现在你要从点 u u u走到点 v v v,则你身上的金钱既不可能小于 A u − B u A_u-B_u AuBu,也不会小于 A v − B v A_v-B_v AvBv;并且,显然当你的金钱 ≥ m a x ( A u − B u , A v − B v ) \geq max(A_u-B_u,A_v-B_v) max(AuBu,AvBv)时,这次移动必定成立,于是我们可以认为点 u u u和点 v v v之间的边权为 m a x ( A u − B u , A v − B v ) max(A_u-B_u,A_v-B_v) max(AuBu,AvBv),记 C i = A i − B i C_i=A_i-B_i Ci=AiBi,则边权等价于 m a x ( C u , C v ) max(C_u,C_v) max(Cu,Cv)

从边权的角度考量,如果我们已经走过了边权为 w w w的边,则边权 < w \lt w <w的边也一定能走;贪心地说,如果我们走过了边权为 w w w的边,那我们可以先将边权 ≤ w \leq w w的所有边都走了,之后再去走边权 > w \gt w >w的边,显然这个策略一定不劣。

因此,我们可以将边权从小往大排序后按顺序拿钱,也就是按顺序激活边权 ≤ w \leq w w的所有边,但有时两个连通块之间存在 > w \gt w >w的边,此时我们必须先把一个连通块拿完再过去。

这种瓶颈路的设定引导我们建立 K r u s k a l Kruskal Kruskal重构树,然后再做一个 d p dp dp。具体地,设 d p [ u ] dp[u] dp[u]表示将 u u u所在的子树全部拿走所需要的最少金钱,则有状态转移方程:
d p [ u ] = m i n v ∈ s o n [ u ] ( m a x ( d p [ v ] , v a l u ) + s u m [ u ] − s u m [ v ] ) dp[u] = min_{v \in son[u]}(max(dp[v],val_u)+sum[u]-sum[v]) dp[u]=minvson[u](max(dp[v],valu)+sum[u]sum[v])
其中 m a x ( d p [ v ] , v a l u ) max(dp[v],val_u) max(dp[v],valu)是指先拿完 v v v所在的子树的钱和该边权 v a l u val_u valu取个 m a x max max;后者是指我们可以通过边权为 v a l u val_u valu的边来到另一个连通块,此时我们可以大拿特拿,因为 v a l u val_u valu从根往叶是单调不增的。

最后答案就是这棵树中根节点的 d p dp dp值。

代码

#include<bits/stdc++.h>

using LL = long long;
const LL inf = 1e16;

struct DSU{
	std::vector<int> fa;
	DSU(int n) {
		fa.assign(n,0);
		std::iota(fa.begin(),fa.end(),0);
	}
	int find (int x) {
		while (fa[x] != x) {
			x = fa[x] = fa[fa[x]];
		}
		return x;
	}
	void merge(int x,int y) {
		fa[y] = x;
	}
};

void OuO() {
	int n,m;std::cin >> n >> m;
	std::vector<LL> A(n),B(n),C(n);
	std::vector<LL> val(n*2-1),sum(n*2-1),fa(n*2-1),dp(n*2-1);
	std::vector eg(n*2,std::vector<LL>());
	for (int i = 0; i < n; ++i) {
		std::cin >> A[i] >> B[i];
		C[i] = std::max(A[i] - B[i],0ll);
		sum[i] = B[i];
		dp[i] = std::max(A[i],B[i]);
	}
	{
		std::vector<std::array<LL, 3>> edge(m);
		DSU dsu = DSU(n * 2 - 1);
		for (int i = 0, x, y; i < m; ++i) {
			std::cin >> x >> y;
			x--, y--;
			edge[i] = {x, y, std::max(C[x], C[y])};
		}
		std::sort(edge.begin(),edge.end(),[&](std::array<LL,3> x,std::array<LL,3> y) {
			return x[2] < y[2];
		});
		int ecnt = n;
		for (auto [u,v,w] : edge) {
			u = dsu.find(u),v = dsu.find(v);
			if (u == v) continue;
			val[ecnt] = w;
			eg[ecnt].emplace_back(u),eg[ecnt].emplace_back(v);
			fa[u] = fa[v] = ecnt;
			sum[ecnt] = sum[u] + sum[v];
			dsu.merge(ecnt,u),dsu.merge(ecnt,v);
			ecnt ++;
		}
	}
	std::function<void(int)> dfs = [&](int u) {
		if (!eg[u].empty())dp[u] = inf;
		for (auto v : eg[u]) {
			dfs(v);
			dp[u] = std::min(dp[u],sum[u]-sum[v]+std::max(val[u],dp[v]));
		}
//		std::cout << u << " " << sum[u] << " " << dp[u] << '\n';
	};
	dfs(n*2-2);
	std::cout << dp[n*2-2];
}

int main() {
	std::ios::sync_with_stdio(false);
	std::cin.tie(nullptr);

//    clock_t st = clock();
//    std::cout << std::fixed << std::setprecision(12);

//    freopen("test.in", "r", stdin);
//    freopen("test.out", "w", stdout);

	int T = 1;
//	std::cin >> T;
	while (T --) {
		OuO();
	}

//    std::cout << (double)(clock()-st)/CLOCKS_PER_SEC;

	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值