Reading0723-Threshold factor models for high-dimensional time series

Threshold factor models for high-dimensional time series

Xialu Liu, Rong Chen(2020)

  • We consider a threshold factor model for high-dimensional time series in which the dynamics of the time series is assumed to switch between different regimes according to the value of a threshold variable.
  • Professor George C. Tiao is one of the pioneers in the field of jointly modeling multiple time series and has made significant contributions
  • In many applications it is often observed that the loading matrix of a factor model may vary.
  • we formally introduce a threshold factor model, propose an estimation procedure for the loading spaces and the number of factors based on eigen-analysis of the cross moment matrices of the observed process, develop an objective function for the identification of the threshold value and the threshold variable, and investigate their theoretical properties.

Notation

y t = A x t + ε t \mathbf{y}_{t}=\mathbf{A} \mathbf{x}_{t}+\boldsymbol{\varepsilon}_{t} yt=Axt+εt

  • x t = ( x t , 1 , x t , 2 , … , x t , k 0 ) ′ \mathbf{x}_{t}=\left(x_{t, 1}, x_{t, 2}, \ldots,x_{t,k_{0}}\right)^{\prime} xt=(xt,1,xt,2,,xt,k0) is a set of unobserved (latent) factor time series with dimension k 0 k_{0} k0
  • y t \mathbf{y}_{t} yt be an observed p × 1 p \times 1 p×1 time series t = 1 , … , n t=1, \ldots, n t=1,,n
  • A is the loading matrix of the common factors,
  • ε t \boldsymbol{\varepsilon}_{t} εt is an error process or an idiosyncratic component.
  • z t z_{t} zt is a partially known threshold variable
  • Q i \mathbf{Q}_{i} Qi are orthonormal matrices.

Model

y t = A x t + ε t \mathbf{y}_{t}=\mathbf{A} \mathbf{x}_{t}+\boldsymbol{\varepsilon}_{t} yt=Axt+εt

y t = { A 1 x t + ε t , 1 z t < r 0 , A 2 x t + ε t , 2 z t ⩾ r 0 ,  and  ε t , i ∼ N ( 0 , Σ t , i ) , i = 1 , 2 \mathbf{y}_{t}=\left\{\begin{array}{ll}\mathbf{A}_{1} \mathbf{x}_{t}+\boldsymbol{\varepsilon}_{t, 1} & z_{t}<r_{0}, \\ \mathbf{A}_{2} \mathbf{x}_{t}+\boldsymbol{\varepsilon}_{t, 2} & z_{t} \geqslant r_{0},\end{array} \text { and } \boldsymbol{\varepsilon}_{t, i} \sim N\left(\mathbf{0}, \boldsymbol{\Sigma}_{t, i}\right), \quad i=1,2\right. yt={A1xt+εt,1A2xt+εt,2zt<r0,ztr0, and εt,iN(0,Σt,i),i=1,2

Q i ′ Q i = I k 0 ,  and  A i = Q i Γ i , i = 1 , 2 \mathbf{Q}_{i}^{\prime} \mathbf{Q}_{i}=\mathbf{I}_{k_{0}}, \text { and } \mathbf{A}_{i}=\mathbf{Q}_{i} \Gamma_{i}, \quad i=1,2 QiQi=Ik0, and Ai=QiΓi,i=1,2

R t = ∑ i = 1 2 Γ i x t I t , i \mathbf{R}_{t}=\sum_{i=1}^{2} \Gamma_{i} \mathbf{x}_{t} I_{t, i} Rt=i=12ΓixtIt,i

y t = ∑ i = 1 2 ( Q i R t + ε t , i ) I t , i \mathbf{y}_{t}=\sum_{i=1}^{2}\left(\mathbf{Q}_{i} \mathbf{R}_{t}+\boldsymbol{\varepsilon}_{t, i}\right) I_{t, i} yt=i=12(QiRt+εt,i)It,i

Their aim is to estimate the loading spaces M ( A k ) , i = 1 , 2 \mathcal{M}\left(\boldsymbol{A}_{k}\right), i=1,2 M(Ak),i=1,2, the number of factors k 0 k_{0} k0, and the threshold value r 0 r_{0} r0, given the threshold variable.

Estimation

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值