Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks
论文阅读:Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial AttacksAbstract对抗性训练是一种常用的防御策略,用于对抗有界 Lp的攻击威胁模型。 然而,它经常降低模型在正常图像上的性能,更重要的是,防御不能很好地推广到新的攻击。鉴于深度生成模型(如 GANs 和 VAEs)在描述(近似)图像的底层流形方面的成功,我们研究是否可以通过利用底层流形信 息来弥补上述对抗性训练的不足。 为
原创
2021-04-20 16:23:35 ·
295 阅读 ·
0 评论