给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。
思路:
dp定义:dp[i]代表数字i拆分的最大乘积。
递推公式:
d
p
[
i
]
=
m
a
x
1
≤
j
≤
i
−
2
(
d
p
[
i
]
,
m
a
x
(
j
∗
(
i
−
j
)
,
j
∗
d
p
[
i
−
j
]
)
)
dp[i]=max_{1\le j\le i-2}(dp[i],max(j*(i-j),j*dp[i-j]))
dp[i]=max1≤j≤i−2(dp[i],max(j∗(i−j),j∗dp[i−j]))
因为dp[i]的拆分至少为两个数字的乘积,所以
j
∗
(
i
−
j
)
j*(i-j)
j∗(i−j)表明是把数字拆成两份,
j
∗
d
p
[
i
−
j
]
j*dp[i-j]
j∗dp[i−j]为两份以上。
代码:
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n+1,0);
dp[2]=1;
for(int i=3;i<=n;i++){
for(int j=1;j<=i-2;j++){
dp[i]=max(dp[i],max(j*(i-j),j*dp[i-j]));
}
}
return dp[n];
}
};