研习代码 day33 | 初探动态规划——斐波那契数及其应用

一、斐波那契数

        1.1 题目

        斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

        F(0) = 0,F(1) = 1
        F(n) = F(n - 1) + F(n - 2),其中 n > 1

        给定 n ,请计算 F(n) 。

示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:

  • 0 <= n <= 30

        1.2 题目链接

        509.斐波那契数

        1.3 解题思路和过程想法

        (1)解题思路

        1)普通递推:用数组元素 F[i] 存储斐波那契数F(i),初始化前两个元素,然后通过遍历用递推公式推导其他元素。时间复杂度 O(n),空间复杂度 O(n)

        2)利用双指针递推:解法同上,但在遍历时,仅迭代使用两个指针完成所有的推导。时间复杂度 O(n),空间复杂度 O(1)

        (2)过程想法

        斐波那锲比较经典,解法很熟悉

        1.4 代码

        1.4.1 普通递推
class Solution:
    def fib(self, n: int) -> int:
        # 初始化斐波那锲数列中的前两个元素
        F = [0,1]

        # 迭代处理后续元素
        for i in range(2,31):
            F.append(F[i-1] + F[i-2])

        return F[n]
        1.4.2 利用双指针递推
class Solution:
    def fib(self, n: int) -> int:
        # 初始化斐波那锲数列中的前两个元素
        dp = [0,1]

        if n < 2:
            return dp[n]

        summ = 0
        # 使用两指针迭代处理后续元素,不用多余的空间
        for i in range(2,n+1):
            summ = dp[0] + dp[1]
            dp[0],dp[1] = dp[1],summ

        return dp[1]

二、爬楼梯

        2.1 题目

        假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

        每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

提示:

  • 1 <= n <= 45

        2.2 题目链接

        70.爬楼梯

        2.3 解题思路和过程想法

        (1)解题思路

        用 dp[n] 记录到达 n 层的方法数。因为最后一步只有两种情况:一个台阶 或 两个台阶,所以递推关系:到达 n 层的方法数 = 到达 n-1 层的方法数 + 到达 n-2 层的方法数。
        注:其实就是实际应用版的斐波那锲数列

        (2)过程想法

        最初没看出来其中的规律,想的是回溯法,后来尝试着写前几个楼层的步数时发现其中的规律。

        2.4 代码

        2.4.1 普通递推
class Solution:
    def climbStairs(self, n: int) -> int:
        if n < 3 :
            return n
        
        # 记录到达 n 层的方法数
        dp = [0] * (n+1)

        # 递推关系:到达 n 层的方法数 = 到达 n-1 层的方法数 + 到达 n-2 层的方法数
        # 最后一步只有两种情况:一个台阶 或 两个台阶

        # 初始化
        dp[1] = 1
        dp[2] = 2

        # 递推
        for i in range(3,n+1):
            dp[i] = dp[i-1] + dp[i-2]

        return dp[n]
        2.4.2 利用双指针递推
class Solution:
    def climbStairs(self, n: int) -> int: 
        if n < 3 :
            return n
        
        # 记录到达 n 层的方法数
        dp = [0] * 3

        # 递推关系:到达 n 层的方法数 = 到达 n-1 层的方法数 + 到达 n-2 层的方法数
        # 最后一步只有两种情况:一个台阶 或 两个台阶

        # 初始化
        dp[1] = 1
        dp[2] = 2

        # 用双指针递推
        summ = 0
        for i in range(3,n+1):
            summ = dp[1] + dp[2]
            dp[1] = dp[2]
            dp[2] = summ

        return dp[2]

三、使用最小花费爬楼梯

        3.1 题目

        给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

        你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

        请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。

提示:

  • 2 <= cost.length <= 1000
  • 0 <= cost[i] <= 999

        3.2 题目链接

        746.使用最小花费爬楼梯

        3.3 解题思路和过程想法

        (1)解题思路

        分析:到达从第 0 层或第 1 层是没有费用的,只有需向上跳,才需花费 cost[i]。楼顶是下标为 len(cost)        
        用 dp[n] 记录到达第 n 层的最低花费;易得初始化:dp[0] = 0;dp[1] = 0;因为最后一步只有两种情况:一个台阶 或 两个台阶,所以递推关系:dp[n] = min(dp[n-1]+cost[n-1],dp[n-2]+cost[n-1])。最后凭借递推关系正向遍历,最后得出相应楼层结果

        (2)过程想法

        思路和上一题差不多,但是在“楼顶是下标为 len(cost) ”的理解上卡了一下

        3.4 代码

class Solution:
    def minCostClimbingStairs(self, cost: List[int]) -> int:
        # 数组:到达第 n 层的最低花费;楼顶是下标为 len(cost)
        dp = [0] * (len(cost)+1)

        # 初始化:可以从第 0 层或第 1 层开始跳
        dp[0] = 0
        dp[1] = 0

        # 递推关系:dp[n] = min(dp[n-1]+cost[n-1],dp[n-2]+cost[n-1])
        for i in range(2,len(cost)+1):
            dp[i] = min(dp[i-2]+cost[i-2],dp[i-1]+cost[i-1])

        return dp[len(cost)]

四、动态规划解题模板

        4.1 确定dp数组以及下标的含义

        4.2 确定递推公式

        4.3 dp数组如何初始化

        4.4 确定遍历顺序

        4.5 举例推导dp数组

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值