原文链接:http://www.twoeggz.com/news/4791962.html
在古代,缺少数学技巧的情况下,圆周率的计算是相当困难的,我们国家伟大的数学家,天文学家祖冲之(429-500,字文远),利用复杂的割圆术,将圆周率的计算精确到小数点第七位,这是已经是相当了不起的成就了,直到1000年后才被阿拉伯数学家阿尔·卡西才打破纪录。
我国古代杰出数学家祖冲之
在牛顿-莱布尼茨发明微积分之后,计算圆周率的巧妙办法更多了,后来虚数的使用,提供了更多巧妙的办法,看到在众多计算圆周的公式,大家是不是很纳闷,那些复杂的公式,数学家是怎么找到的呢?
今天,我就和大家分享一个,利用虚数,求圆周率的万能方法,我们的推导过程,都是初等数学知识。
首先,我们需要漂亮的欧拉恒等式:
欧拉恒等式
然后我们很容易得到:
欧拉恒等式变换后的结果
这个奇怪的恒等式,就是我们生成圆周率级数的万能公式,因为右边的虚数,我们有巧妙的办法转换成无穷级数。
不过你需要拿出一个基础的泰勒级数:
对数的泰勒级数展开式
这个泰勒级数,自变量取复数单位±i,你尽管放心大胆去用。
对数级数赋值
然后我们就可以利用虚数的性质,尽情地操弄数学技巧了,比如lni=ln[(1+i)/(1-i)]=ln(1+i)-ln(1-i),
立马就有:
莱布尼茨级数
这个级数,就是著名的莱布尼兹级数,莱布尼兹在1674年用其他其他非常复杂的办法得到了它,但是用这个级数求圆周率效率太低,因为收敛速度实在太慢了。
我们依葫芦画瓢,再来变换:
对虚数i进行变换
利用同样的技巧后,带入对数级数,立马得到:
圆周率级数
而这个级数收敛相当快,你只要取前四项,就能得到和祖冲之一样的精度。
这个技巧屡试不爽,如果你把前面的2和3,换成5和-239,然后5+i取4次方,就可以得到另外一个收敛非常快的著名公式——梅钦公式,梅钦公式至今仍然是计算机计算圆周率的重要公式之一。
利用梅钦公式,就算手算,你也可以轻松地把圆周率精确到50位;至于如何分解,全在于你对虚数单位i的处理,这样的处理方式有无数个,你得到的圆周率级数也就有无数个,它们的收敛速度不尽相同,不过大家在处理这种正负交错的级数时,要特别小心了,因为条件收敛级数的“炸弹”很多的呢。
圆周率By艾伯史密斯