#2 动态规划中的降维之逆序遍历

本文深入探讨动态规划中降维优化技术,特别是逆序遍历的应用。通过讲解leetcode上的例题,解释为何在某些情况下需要逆序遍历来避免旧值被覆盖,确保正确计算动态规划数组的值。重点分析了最大平均值的分组问题,展示如何从二维动态规划降至一维并使用逆序遍历求解。
摘要由CSDN通过智能技术生成

一整天就做了这一道题,必须好好总结一下。

降维

动态规划类的题目,如果题目里给了两个参数,那么往往就需要建立二维动态数组,在做题的时候要随手把表格画出来,便于理解。

很多时候,二维数组可以进行空间优化,因为第i行的值往往只与第i-1行有关,因此只需要维护一个一维的动态数组就好了。

在维护一个一维dp数组的时候,有时候第i个元素的新的值,只跟第i个元素的旧值,以及它前面那个值有关,这样的话就不需要逆序遍历。

例题:1、leetcode 62 : 不同路径 https://leetcode-cn.com/problems/minimum-path-sum/

例题:2、leetcode 64 : 最小路径和 https://leetcode-cn.com/problems/unique-paths/

这两个题都是动态规划类题,都可以将二维的动态空间优化成一维,而且都只需要顺序遍历就好。

降维之逆序遍历

有些题目将二维动态数组优化成一维dp数组之后,第i个元素的新值需要用到第0~i-1所有的值综合计算得出,此时如果继续顺序遍历,那么就会覆盖掉dp数组的旧值,导致后面无法再继续计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值