目录
问题描述
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例:
4 5
1 2
2 4
3 4
4 5
输出样例:
8
分析
「0-1 背包」是较为简单的动态规划问题,也是其余背包问题的基础。
动态规划是不断决策求最优解的过程,「0-1 背包」即是不断对第 i 个物品的做出决策,「0-1」正好代表不选与选两种决定。
问题建模
最优化证明
递推关系
定义函数f(i,j):代表当前背包容量为j时,前i个物品最佳组合所对应的价值;
那这里的递推关系式是怎样的呢?对于第i个物品,有两种可能:
- 背包剩余容量不足以容纳该物品,此时背包的价值与前i-1个物品的价值是一样的,f(i,j) = f(i-1,j)
- 背包剩余容量可以装下该商品,此时需要进行判断,因为装了该商品不一定能使最终组合达到最大价值。如果不装该商品,则价值为:f(i-1,j);如果装了该商品,则价值为f(i-1,j-vi) + wi;从两者中选择较大的那个。
递推关系式:
(1)状态f[i][j]定义:前 i 个物品,背包容量 j 下的最优解(最大价值):
当前的状态依赖于之前的状态,可以理解为从初始状态f[0][0] = 0开始决策,有 N 件物品,则需要 N 次决 策,每一次对第 i 件物品的决策,状态f[i][j]不断由之前的状态更新而来。
(2)当前背包容量不够(j < v[i]),没得选,因此前 i 个物品最优解即为前 i−1 个物品最优解:
对应代码:f[i][j] = f[i - 1][j]。
(3)当前背包容量够,可以选,因此需要决策选与不选第 ii 个物品:
选:f[i][j] = f[i - 1][j - v[i]] + w[i]。
不选:f[i][j] = f[i - 1][j] 。
我们的决策是如何取到最大价值,因此以上两种情况取 max() 。
对于这个问题的子问题,这里有必要详细说明一下。原问题是,将n件物品放入容量为v的背包,子问题则是,将前i件物品放入容量为j的背包,所得到的最优价值为f(i,j),如果只考虑第i件物品放还是不放,那么就可以转化为一个只涉及到前i-1个物品的问题。如果不放第i个物品,那么问题就转化为“前i-1件物品放入容量为j的背包中的最优价值组合”,对应的值为f(i-1,j)。如果放第i个物品,那么问题就转化成了“前i-1件物品放入容量为j-vi的背包中的最优价值组合”,此时对应的值为f(i-1,j-vi)+wi。
C++代码1(二维数组)
#include<iostream>
#include<cstring>
using namespace std;
const int N = 1010;
int f[N][N]; //f[i][j], 背包容量为j体积下,前i个物品的最大价值
int v[N], w[N]; //体积、价值
int item[N] = {0}; //记录最优解的具体情况
void findWhat(int n, int m) //回溯最优解的具体情况
{
int i = n;
while(i>0)
{
if (f[i][m] == f[i - 1][m]) {
item[i] = 0;
i--;
}
else if (m - v[i] >= 0 && f[i][m] == f[i - 1][m - v[i]] + w[i]) {
item[i] = 1;
m -= v[i]; //回溯
i--;
}
}
}
int main()
{
int n, m;
cin >> n >> m;
for(int i = 1; i <= n; i++)
cin >> v[i] >> w[i];
memset(f, 0, n*n*sizeof(int));
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
{
//当前背包容量装不进第i个物品,则价值等于前i-1个物品
if(j < v[i])
f[i][j] = f[i - 1][j];
//能装,需进行决策是否选择第i个物品
else
//f[i - 1][j - v[i]]是指:从第1 ~ i-1中选物品,且装入物品的总体积不超过 j-v[i]的前提下,取得最大价值
//f[i][j] = f[i - 1][j - v[i]] + w[i]是指:当前背包容量为j,在装入物品的总体积不超过 j-v[i]的前提下,
//从第1 ~ i-1中选出最大价值为f[i - 1][j - v[i]]的方案,然后再将第i个物品装进背包,则体积由j-v[i]变为j,
//价值由f[i - 1][j - v[i]]增加为f[i - 1][j - v[i]]+w[i]
f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
}
/*
//与上面的for循环等效
//for(int j = v[i]; j <= m; j++)
{
//f[i][j] = f[i - 1][j]; //这一步可省去
//f[i][j] = max(f[i-1][j], f[i - 1][j - v[i]] + w[i]);
}
*/
}
cout<<endl<<"背包所能装下物品的最大价值为:"<<f[n][m]<<endl;
findWhat(n, m); //求最优解的具体情况
cout<<endl<<"取得最优解时,背包装下的物品编号(1,2,...,n)为:"<<endl;
for (int i=1; i<5; i++) //最优解输出
{
if(item[i])
{
cout<<endl<<"第"<<i<<"号物品:"<<"体积为"<<v[i]<<","<<"价值为"<<w[i]<<endl;
}
}
}
C++代码2(一维数组)
#include<iostream>
using namespace std;
const int MAXN = 1005;
int f[MAXN] = {0}; //
int main()
{
int n, m;
cin >> n >> m;
for(int i = 1; i <= n; i++) {
int v, w;
cin >> v >> w; // 边输入边处理
for(int j = m; j >= v; j--) //一定要倒序,否则会出错
f[j] = max(f[j], f[j - v] + w);
}
cout << f[m] << endl;
return 0;
}