分布式定时任务

分布式任务调度框架几乎是每个大型应用必备的工具,本文介绍了任务调度框架使用的需求背景和痛点,对业界普遍使用的开源分布式任务调度框架的使用进行了探究实践,并分析了这几种框架的优劣势和对自身业务的思考。

一、业务背景

1.1 为什么需要使用定时任务调度

(1)时间驱动处理场景:整点发送优惠券,每天更新收益,每天刷新标签数据和人群数据。

(2)批量处理数据:按月批量统计报表数据,批量更新短信状态,实时性要求不高。

(3)异步执行解耦:活动状态刷新,异步执行离线查询,与内部逻辑解耦。

1.2 使用需求和痛点

(1)任务执行监控告警能力。

(2)任务可灵活动态配置,无需重启。

(3)业务透明,低耦合,配置精简,开发方便。

(4)易测试。

(5)高可用,无单点故障。

(6)任务不可重复执行,防止逻辑异常。

(7)大任务的分发并行处理能力。

二、开源框架实践与探索

2.1 Java 原生 Timer 和ScheduledExecutorService

2.1.1 Timer使用

图片

Timer缺陷:

  1. Timer底层是使用单线程来处理多个Timer任务,这意味着所有任务实际上都是串行执行,前一个任务的延迟会影响到之后的任务的执行。
  2. 由于单线程的缘故,一旦某个定时任务在运行时,产生未处理的异常,那么不仅当前这个线程会停止,所有的定时任务都会停止。
  3. Timer任务执行是依赖于系统绝对时间,系统时间变化会导致执行计划的变更。 

由于上述缺陷,尽量不要使用Timer, idea中也会明确提示,使用ScheduledThreadPoolExecutor替代Timer 。

2.1.2 ScheduledExecutorService使用

ScheduledExecutorService对于Timer的缺陷进行了修补,首先ScheduledExecutorService内部实现是ScheduledThreadPool线程池,可以支持多个任务并发执行。

对于某一个线程执行的任务出现异常,也会处理,不会影响其他线程任务的执行,另外ScheduledExecutorService是基于时间间隔的延迟,执行不会由于系统时间的改变发生变化。

当然,ScheduledExecutorService也有自己的局限性:只能根据任务的延迟来进行调度,无法满足基于绝对时间和日历调度的需求。

2.2 Spring Task

2.2.1 Spring Task 使用

spring task 是spring自主开发的轻量级定时任务框架,不需要依赖其他额外的包,配置较为简单。

此处使用注解配置

图片

图片

2.2.2 Spring Task缺陷

Spring Task 本身不支持持久化,也没有推出官方的分布式集群模式,只能靠开发者在业务应用中自己手动扩展实现,无法满足可视化,易配置的需求。

2.3 永远经典的 Quartz

2.3.1 基本介绍

Quartz框架是Java领域最著名的开源任务调度工具,也是目前事实上的定时任务标准,几乎全部的开源定时任务框架都是基于Quartz核心调度构建而成。

2.3.2 原理解析

核心组件和架构

图片

关键概念

(1)Scheduler:任务调度器,是执行任务调度的控制器。本质上是一个计划调度容器,注册了全部Trigger和对应的JobDetail, 使用线程池作为任务运行的基础组件,提高任务执行效率。

(2)Trigger:触发器,用于定义任务调度的时间规则,告诉任务调度器什么时候触发任务,其中CronTrigger是基于cron表达式构建的功能强大的触发器。

(3)Calendar:日历特定时间点的集合。一个trigger可以包含多个Calendar,可用于排除或包含某些时间点。

(4)JobDetail:是一个可执行的工作,用来描述Job实现类及其它相关的静态信息,如Job的名称、监听器等相关信息。

(5)Job:任务执行接口,只有一个execute方法,用于执行真正的业务逻辑。

(6)JobStore:任务存储方式,主要有RAMJobStore和JDBCJobStore,RAMJobStore是存储在JVM的内存中,有丢失和数量受限的风险,JDBCJobStore是将任务信息持久化到数据库中,支持集群。

2.3.3 实践说明

(1)关于Quartz的基本使用

  • 可参考Quartz官方文档和网上博客实践教程。

(2)业务使用要满足动态修改和重启不丢失, 一般需要使用数据库进行保存。

  • Quartz本身支持JDBCJobStore,但是其配置的数据表比较多,官方推荐配置可参照官方文档,超过10张表,业务使用比较重。
  • 在使用的时候只需要存在基本trigger配置和对应任务以及相关执行日志的表即可满足绝大部分需求。

(3)组件化

  • 将quartz动态任务配置信息持久化到数据库,将数据操作包装成基本jar包,供项目之间使用,引用项目只需要引入jar包依赖和配置对应的数据表,使用时就可以对Quartz配置透明。

(4)扩展

  • 集群模式
    通过故障转移和负载均衡实现了任务的高可用性,通过数据库的锁机制来确保任务执行的唯一性,但是集群特性仅仅只是用来HA,节点数量的增加并不会提升单个任务的执行效率,不能实现水平扩展。
  • Quartz插件
    可以对特定需要进行扩展,比如增加触发器和任务执行日志,任务依赖串行处理场景,可参考:quartz插件——实现任务之间的串行调度

2.3.4 缺陷和不足

(1)需要把任务信息持久化到业务数据表,和业务有耦合。

(2)调度逻辑和执行逻辑并存于同一个项目中,在机器性能固定的情况下,业务和调度之间不可避免地会相互影响。

(3)quartz集群模式下,是通过数据库独占锁来唯一获取任务,任务执行并没有实现完善的负载均衡机制。

2.4 轻量级神器 XXL-JOB

2.4.1 基本介绍

XXL-JOB是一个轻量级分布式任务调度平台,主打特点是平台化,易部署,开发迅速、学习简单、轻量级、易扩展,代码仍在持续更新中。

“调度中心”是任务调度控制台,平台自身并不承担业务逻辑,只是负责任务的统一管理和调度执行,并且提供任务管理平台, “执行器” 负责接收“调度中心”的调度并执行,可直接部署执行器,也可以将执行器集成到现有业务项目中。 通过将任务的调度控制和任务的执行解耦,业务使用只需要关注业务逻辑的开发。

主要提供了任务的动态配置管理、任务监控和统计报表以及调度日志几大功能模块,支持多种运行模式和路由策略,可基于对应执行器机器集群数量进行简单分片数据处理。

2.4.2 原理解析

2.1.0版本前核心调度模块都是基于quartz框架,2.1.0版本开始自研调度组件,移除quartz依赖 ,使用时间轮调度。

图片

2.4.3 实践说明

详细配置和介绍参考官方文档

2.4.4 任务可视化配置

内置了平台项目,方便了开发者对任务的管理和执行日志的监控,并提供了一些便于测试的功能。

图片

2.4.5 扩展

(1)任务监控和报表的优化。

(2)任务报警方式的扩展,比如加入告警中心,提供内部消息,短信告警。

(3)对实际业务内部执行出现异常情况下的不同监控告警和重试策略。

2.5 高可用 Elastic-Job

2.5.1 基本介绍

Elastic-Job是一个分布式调度解决方案,由两个相互独立的子项目Elastic-Job-Lite和Elastic-Job-Cloud组成。

Elastic-Job-Lite定位为轻量级无中心化解决方案,使用jar包的形式提供分布式任务的协调服务。

Elastic-Job-Cloud使用Mesos + Docker的解决方案,额外提供资源治理、应用分发以及进程隔离等服务。

可惜的是已经两年没有迭代更新记录。

2.5.2 原理解析

图片

2.5.3 实践说明

2.5.3.1 demo使用

(1)安装zookeeper,配置注册中心config,配置文件加入注册中心zk的配置。

  1. @Configuration

  2. @ConditionalOnExpression("'${regCenter.serverList}'.length() > 0")

  3. public class JobRegistryCenterConfig {

  4. @Bean(initMethod = "init")

  5. public ZookeeperRegistryCenter regCenter(@Value("${regCenter.serverList}") final String serverList,

  6. @Value("${regCenter.namespace}") final String namespace) {

  7. return new ZookeeperRegistryCenter(new ZookeeperConfiguration(serverList, namespace));

  8. }

  9. }

  10. spring.application.name=demo_elasticjob

  11. regCenter.serverList=localhost:2181

  12. regCenter.namespace=demo_elasticjob

  13. spring.datasource.url=jdbc:mysql://127.0.0.1:3306/xxl-job?Unicode=true&characterEncoding=UTF-8

  14. spring.datasource.username=user

  15. spring.datasource.password=pwd

​​​​​(2)配置数据源config,并配置文件中加入数据源配置。

 
  1. @Getter

  2. @Setter

  3. @NoArgsConstructor

  4. @AllArgsConstructor

  5. @ToString

  6. @Configuration

  7. @ConfigurationProperties(prefix = "spring.datasource")

  8. public class DataSourceProperties {

  9. private String url;

  10. private String username;

  11. private String password;

  12. @Bean

  13. @Primary

  14. public DataSource getDataSource() {

  15. DruidDataSource dataSource = new DruidDataSource();

  16. dataSource.setUrl(url);

  17. dataSource.setUsername(username);

  18. dataSource.setPassword(password);

  19. return dataSource;

  20. }

  21. }

 
  1. spring.datasource.url=jdbc:mysql://127.0.0.1:3306/xxl-job?Unicode=true&characterEncoding=UTF-8

  2. spring.datasource.username=user

  3. spring.datasource.password=pwd

​​​​​​(3)配置事件config。

  1. @Configuration

  2. public class JobEventConfig {

  3. @Autowired

  4. private DataSource dataSource;

  5. @Bean

  6. public JobEventConfiguration jobEventConfiguration() {

  7. return new JobEventRdbConfiguration(dataSource);

  8. }

  9. }

(4)为了便于灵活配置不同的任务触发事件,加入ElasticSimpleJob注解。

  1. @Target({ElementType.TYPE})

  2. @Retention(RetentionPolicy.RUNTIME)

  3. public @interface ElasticSimpleJob {

  4. @AliasFor("cron")

  5. String value() default "";

  6. @AliasFor("value")

  7. String cron() default "";

  8. String jobName() default "";

  9. int shardingTotalCount() default 1;

  10. String shardingItemParameters() default "";

  11. String jobParameter() default "";

  12. }

(5)对配置进行初始化。

  1. @Configuration

  2. @ConditionalOnExpression("'${elaticjob.zookeeper.server-lists}'.length() > 0")

  3. public class ElasticJobAutoConfiguration {

  4. @Value("${regCenter.serverList}")

  5. private String serverList;

  6. @Value("${regCenter.namespace}")

  7. private String namespace;

  8. @Autowired

  9. private ApplicationContext applicationContext;

  10. @Autowired

  11. private DataSource dataSource;

  12. @PostConstruct

  13. public void initElasticJob() {

  14. ZookeeperRegistryCenter regCenter = new ZookeeperRegistryCenter(new ZookeeperConfiguration(serverList, namespace));

  15. regCenter.init();

  16. Map<String, SimpleJob> map = applicationContext.getBeansOfType(SimpleJob.class);

  17. for (Map.Entry<String, SimpleJob> entry : map.entrySet()) {

  18. SimpleJob simpleJob = entry.getValue();

  19. ElasticSimpleJob elasticSimpleJobAnnotation = simpleJob.getClass().getAnnotation(ElasticSimpleJob.class);

  20. String cron = StringUtils.defaultIfBlank(elasticSimpleJobAnnotation.cron(), elasticSimpleJobAnnotation.value());

  21. SimpleJobConfiguration simpleJobConfiguration = new SimpleJobConfiguration(JobCoreConfiguration.newBuilder(simpleJob.getClass().getName(), cron, elasticSimpleJobAnnotation.shardingTotalCount()).shardingItemParameters(elasticSimpleJobAnnotation.shardingItemParameters()).build(), simpleJob.getClass().getCanonicalName());

  22. LiteJobConfiguration liteJobConfiguration = LiteJobConfiguration.newBuilder(simpleJobConfiguration).overwrite(true).build();

  23. JobEventRdbConfiguration jobEventRdbConfiguration = new JobEventRdbConfiguration(dataSource);

  24. SpringJobScheduler jobScheduler = new SpringJobScheduler(simpleJob, regCenter, liteJobConfiguration, jobEventRdbConfiguration);

  25. jobScheduler.init();

  26. }

  27. }

  28. }

(6)实现 SimpleJob接口,按上文中方法整合dubbo, 完成业务逻辑。

  1. @ElasticSimpleJob(

  2. cron = "*/10 * * * * ?",

  3. jobName = "OfflineTaskJob",

  4. shardingTotalCount = 2,

  5. jobParameter = "测试参数",

  6. shardingItemParameters = "0=A,1=B")

  7. @Component

  8. public class MySimpleJob implements SimpleJob {

  9. Logger logger = LoggerFactory.getLogger(OfflineTaskJob.class);

  10. @Reference(check = false, version = "cms-dev", group = "cms-service")

  11. private OfflineTaskExecutorFacade offlineTaskExecutorFacade;

  12. @Override

  13. public void execute(ShardingContext shardingContext) {

  14. offlineTaskExecutorFacade.executeOfflineTask();

  15. logger.info(String.format("Thread ID: %s, 作业分片总数: %s, " +

  16. "当前分片项: %s.当前参数: %s," +

  17. "作业名称: %s.作业自定义参数: %s"

  18. ,

  19. Thread.currentThread().getId(),

  20. shardingContext.getShardingTotalCount(),

  21. shardingContext.getShardingItem(),

  22. shardingContext.getShardingParameter(),

  23. shardingContext.getJobName(),

  24. shardingContext.getJobParameter()

  25. ));

  26. }

  27. }

图片

图片

2.6 其余开源框架

(1)Saturn:Saturn是唯品会开源的一个分布式任务调度平台,在Elastic Job的基础上进行了改造。

(2)SIA-TASK:是宜信开源的分布式任务调度平台。

三、优劣势对比和业务场景适配思考

图片

​​​​​

比较项目

quartz

elastic-job-cloud

xxl-job

依赖mysqljdk1.7+, zookeeper 3.4.6+ ,maven3.0.4+ ,mesosmysql ,jdk1.7+ , maven3.0+
HA多节点部署,通过竞争数据库锁来保证只有一个节点执行任务通过zookeeper的注册与发现,可以动态的添加服务器。 支持水平扩容集群部署
任务分片支持支持
文档完善完善完善完善
管理界面支持支持
难易程度简单较复杂简单
公司OpenSymphony当当网个人
高级功能弹性扩容,多种作业模式,失效转移,运行状态收集,多线程处理数据,幂等性,容错处理,spring命名空间支持弹性扩容,分片广播,故障转移,Rolling实时日志,GLUE(支持在线编辑代码,免发布),任务进度监控,任务依赖,数据加密,邮件报警,运行报表,国际化
缺点没有管理界面,以及不支持任务分片等。不适用于分布式场景需要引入zookeeper , mesos, 增加系统复杂度, 学习成本较高调度中心通过获取 DB锁来保证集群中执行任务的唯一性, 如果短任务很多,随着调度中心集群数量增加,那么数据库的锁竞争会比较厉害,性能不好。
使用企业大众化产品,对分布式调度要求不高的公司大面积使用36氪,当当网,国美,金柚网,联想,唯品会,亚信,平安,猪八戒大众点评,运满满,优信二手车,拍拍贷

业务思考:

  1. 丰富任务监控数据和告警策略。
  2. 接入统一登录和权限控制。
  3. 进一步简化业务接入步骤。

四、结语

对于并发场景不是特别高的系统来说,xxl-job配置部署简单易用,不需要引入多余的组件,同时提供了可视化的控制台,使用起来非常友好,是一个比较好的选择。希望直接利用开源分布式框架能力的系统,建议根据自身的情况来进行合适的选型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值