24、Rust 中的闭包、泛型与线程深入探讨

Rust 中的闭包、泛型与线程深入探讨

闭包相关思考

有一段代码运行后会打印多次调用 .change_city_data() 的结果,如 [(1372, 3250), (1834, 15300), (1897, 58800)] ,之后会删除位置 1 的 1834,剩余年份和人口数据也会展示出来。这是一个不错的实验示例,你可以尝试将 change_city_data() 内的闭包修改为获取 self City 结构体)的可变引用,而不是两个参数。需要思考如何修改签名,以及为了让代码再次编译,其余代码需要做哪些更改。

impl Trait 泛型

Rust 除了常见的泛型使用方式,还有 impl Trait 这种泛型用法。下面来详细了解 impl Trait 与常规泛型的区别。
- 常规泛型与 impl Trait 的对比
- 先看一个简单的比较两个数字大小的函数:

fn print_maximum(one: i32, two: i32) {
    let higher = if one > two { one } else { two };
    println!("{higher} is higher");
}
fn main() {
    print_maximum(8, 10);
}
项目资源包含:可运行源码+sql文件+LW; python3.8+django+mysql5.7+html 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 本项目采用了深度学习技术,如卷积神经网络(CNN),用于图像特征提取;同时结合了图像处理库OpenCV,用于图像数据的预处理和后处理。系统实现了基于图像特征的相似图像检索、图像分类、目标检测等功能。通过提取图像的特征向量,不仅可以实现精准的图像搜索和分类,还能帮助用户快速准确地识别图像中的目标物体,具有较高的准确率和效率。通过本项目的设计实现,可以有效解决在大数据环境下处理海量图像数据时面临的特征提取、图像分析和应用问题,为图像信息的挖掘利用提供了新的途径和解决方案,具有广的应用前景和推广价值。 (1)特征提取模块:使用局部特征描述符(如SIFT、SURF)或深度学习特征提取方法,对海量图像中的特征进行抽取和表示,以便后续的相似度计算。 (2)相似图像搜索模块:用户上传查询图像或输入描述后,系统利用特征提取的结果进行相似图像检索,找出查询图像最相似的图像,并返回给用户。 (3)标签搜索模块:系统对图像进行自动标签或标注,用户可以根据这些标签进行图像搜索,方便快速地找到感兴趣的内容。 (4)检索结果排序模块:根据图像的相关度或其他指标,系统对检索结果进行排序,确保用户看到最相关的图像在前面展示。 (5)图像分类模块:系统通过训练模对图像进行分类,将其归入不同的类别,为用户提供更精细的检索和浏览功能。 (6)图像清晰度评估模块:系统可以评估图像的清晰度,排除模糊或质量较低的图像,提高搜索结果的质量和准确性。 (7)图像信息提取模块:系统可以提取图像中的关键信息,如物体、人脸等,为用户提供更多的图像认知和分析功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值