3、云计算与亚马逊云服务(AWS)入门

云计算与亚马逊云服务(AWS)入门

1. 云部署模型

云部署模型主要解答以下几个问题:
- 谁可以访问计算资源?
- 用户如何访问计算资源?
- 物理硬件位于何处?

云计算解决方案有四种不同的部署模型:

1.1 公有云

公有云通过互联网向全球各地的消费者提供服务。服务提供商用于提供这些服务的物理资源也可以位于世界任何地方。不过,对于像银行这样受监管要求限制,不能将客户数据存储在其他国家的组织来说,这种服务可能会带来潜在挑战。

1.2 私有云

私有云为单个组织提供服务。服务通过安全的内部网络提供,普通公众无法通过互联网访问。该组织拥有提供底层服务的物理硬件。由于这种模型涉及高昂的基础设施成本,只有大型企业才负担得起拥有自己的私有云。

1.3 社区云

社区云通过安全网络为一小部分实体(个人或企业)提供服务。用于提供服务的底层资源由社区云所服务的实体拥有。从本质上讲,这种类型的云服务可以被视为介于公有云和私有云之间的一种形式。这种服务并非对任何用户都公开可用,也不会给实体的财务带来巨大压力。相关实体通常有共同的目标或在同一行业领域提供服务。

1.4 混合云

混合云本质上是一种由其他类型云服务组成的云服务。例如,混合云可以由公有云和私有云组成。公有子云可以提供供任何用户通过互联网使用的服务,而私有云可以提供对企业敏感的服务。

2. AWS 生态系统

亚马逊云服务(AWS)是市场上发展最快的云计算服务。目前,AWS 在全球各地提供数十种服务,并且每年都会增加新的服务。

内容概要:本文详细介绍了一个基于Java和Vue的迁移学习少样本图像分类系统的设计实现,涵盖项目背景、目标、技术架构、核心算法、前后端代码实现、数据库设计、部署方案及应用领域。系统通过融合迁移学习少样本学习技术,解决实际场景中样本稀缺、标注成本高、模型泛化能力差等问题,支持数据增强、预训练模型微调、原型网络(ProtoNet)等算法,并实现前后端分离、模块化设计、可视化监控自动化工作流。项目提供完整的代码示例、API接口规范、数据库表结构及GUI界面,具备高扩展性、安全性和易用性,适用于医疗、工业、农业等多个领域。; 适合人群:具备一定Java、Vue和深度学习基础的研发人员、AI算法工程师、计算机相关专业学生及从事智能图像分析的科研人员。; 使用场景及目标:①在样本极少的场景下实现高精度图像分类,如医疗影像、工业缺陷检测;②构建可扩展、可视化的AI训练推理平台;③学习如何将Python深度学习模型Java后端集成,掌握前后端分离的AI系统开发流程;④了解迁移学习、少样本学习在实际工程中的落地方法。; 阅读建议:建议结合文档中的代码示例流程图,搭建本地开发环境进行实践,重点关注前后端交互逻辑、Python模型服务调用机制及数据库设计,同时可基于项目结构扩展联邦学习、多模态融合等高级功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值