- 博客(6)
- 收藏
- 关注
原创 零基础入门NLP-Task6 基于深度学习的文本分类3
零基础入门NLP-新闻文本分类【Task6】Task6 基于深度学习的文本分类3Transformer原理EncoderPositional EncodingsSelf-attentionResidualsDecoderTask6 基于深度学习的文本分类3Transformer原理Transformer 是 Google 团队在 17 年 6 月提出的 NLP 经典之作,由 Ashish Vaswani 等人在 2017 年发表的论文 Attention Is All You Need 中提出。Tr
2020-08-04 15:41:27 196
原创 零基础入门NLP-Task5 基于深度学习的文本分类2
零基础入门NLP-新闻文本分类【Task5】Task5 基于深度学习的文本分类2学习目标word2vec基础原理CBOW原理回顾Skip-grams原理、网络结构和训练Skip-grams过程Skip-grams训练Negative sampling原理Task5 基于深度学习的文本分类2学习目标学习Word2Vec的使用和基础原理学习使用TextCNN、TextRNN进行文本表示学习使用HAN网络结构完成文本分类word2vec基础原理word2vec 是用一个一层的神经网络(即 CBO
2020-07-31 11:00:35 174
原创 零基础入门NLP-Task4 基于深度学习的文本分类1
零基础入门NLP-新闻文本分类【Task4】Task4 基于深度学习的文本分类学习目标文本表示方法基于FastText的文本分类如何使用验证集调参本章小结Task4 基于深度学习的文本分类学习目标学习FastText的使用和基础原理学会使用验证集进行调参文本表示方法FastText 是一种典型的深度学习词向量的表示方法,它非常简单通过 Embedding 层将单词映射到稠密空间,然后将句子中所有的单词在 Embedding 空间中进行平均,进而完成分类操作。FastText 使用词袋以及
2020-07-27 19:04:22 187
原创 零基础入门NLP-Task3 基于机器学习的文本分类
零基础入门NLP-新闻文本分类【Task3】Task3 基于机器学习的文本分类学习目标文本表示方法One-hotBag of WordsN-gramTF-IDF基于机器学习的文本分类Count Vectors + RidgeClassifierTF-IDF + RidgeClassifier本章小结Task3 基于机器学习的文本分类学习目标学会TF-IDF的原理和使用使用sklearn的机器学习模型完成文本分类文本表示方法在机器学习算法的训练过程中,假设给定NNN个样本,每个样本有MMM个特
2020-07-25 18:08:43 202
原创 零基础入门NLP-Task2 数据读取与数据分析
零基础入门NLP-新闻文本分类【Task2】Task2 数据读取与数据分析数据读取数据分析数据分析的结论本章小结本章作业Task2 数据读取与数据分析数据读取赛题虽然是文本数据,每个新闻是不定长的,但仍然使用csv格式进行存储。因此可以直接使用 Pandas 完成数据的读取操作。Pandas 是基于NumPy 的一种工具,为了解决数据分析任务而创建的,Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。数据读取代码:import pandas as pdtrai
2020-07-22 21:33:19 278
原创 零基础入门NLP-Task1 赛题理解
零基础入门NLP-新闻文本分类【Task1】Task1 赛题理解赛题背景赛题数据评测指标解题思路Task1 赛题理解赛题背景举办方:Datawhale,TIANCHI天池赛题名称:零基础入门NLP之新闻文本分类 详细信息.赛题任务:赛题以自然语言处理为背景,要求选手根据新闻文本字符对新闻的类别进行分类,这是一个经典文本分类问题。赛题目标:引导大家走入自然语言处理的世界,带大家接触NLP的预处理、模型构建和模型训练等知识点。学习方案:数据科学库、通用流程和baseline方案学习三部分。赛
2020-07-20 16:30:03 210
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人