1、从Python的基础数据对象转化
可以用numpy中的array()函数生成一个ndarray的对象
2、通过Numpy的内置函数生成
arrange()函数,类似于Python中的range()。可以直接生成一个格式为ndarray类型的一组数据,ndarray是一个矩阵,符合矩阵的运算法则,加减乘
3、从文件读取数据
从csv文件中导入数据。需要用函数loadtxt
loadtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0)
fname是导入的文件名,delimiter是需要分隔的标识符,usecols表示导入那几列,unpack可以将导出的数据分开成几列存储到不同的变量中
x.shape可以查看矩阵的行列,a.shape[0]获取行数,a.shape[1]获取列数
4、numpy的常用函数有min, max, median(中位数), mean(平均值), variance(排序), sort
numpy生成的narray数据类型本身就是一个对象,有两种调用函数方式
一种是 -> x.fun()
另一种是 -> np.fun(x)
注意,不同方法这两种效果可能不一样
x.fun()是调用类自身内部的方法,可能会对自身产生影响,比如调用函数sort,会对自身进行永久排序
np.fun(x)是调用类内部的方法,不会对自身产生影响,调用函数sort时会产生一个新的序列