超分辨率
文章平均质量分 96
PixelMind
专注AI、底层视觉、影像技术领域,解读前沿图像技术,分享使用经验技巧,提供专业咨询和图像解决方案
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【超分辨率专题】FlashVSR:单步Diffusion的再次提速,实时视频超分不是梦!
FlashVSR提出了一种实时视频超分新方法,通过三阶段训练框架实现高效处理。首先利用全注意力模型训练强教师模型,再适配为因果稀疏注意力结构,最后蒸馏为单步模型。创新性地引入局部约束稀疏注意力机制,降低计算复杂度并解决高分辨率泛化问题。同时设计轻量级条件解码器,结合流式处理架构,仅需8帧前瞻延迟,显著提升效率。实验表明,该方法在保持高质量输出的同时,速度提升约7倍,为实时视频超分提供了可行方案。原创 2025-12-06 21:44:39 · 414 阅读 · 0 评论 -
【超分辨率专题】SeedVR :实现任意长度 / 分辨率的视频高效修复
SeedVR:提出了一种创新框架,通过Swin-MMDiT模块和因果视频自编码器实现任意长度/分辨率视频的高效修复。实验表明,该方法在性能与速度上均优于现有方案,为真实世界视频修复提供了实用解决方案。原创 2025-11-25 21:56:25 · 898 阅读 · 0 评论 -
【超分辨率专题】HYPIR:扩散模型先验与 GAN 对抗训练相结合的新型图像复原框架
该论文提出HYPIR框架,将扩散模型先验与GAN对抗训练结合。方法核心在于:1)利用预训练扩散模型初始化网络参数,继承其强大的自然图像先验;2)通过退化预去除编码器微调初步消除图像退化;3)采用对抗训练适配复原任务。理论证明表明,扩散模型初始化使网络初始分布接近自然图像分布,有效稳定了GAN训练过程。实验显示该方法在保持单步推理效率的同时,显著提升了图像复原质量,支持文本引导和纹理调节。原创 2025-11-12 21:51:48 · 1325 阅读 · 0 评论 -
【超分辨率专题】DOVE:特色双阶段训练的单步Real-World视频超分辨
DOVE:高效单步扩散模型实现真实世界视频超分辨率, 针对真实世界视频超分辨率任务,传统方法存在泛化性差、伪影多或计算效率低等问题。DOVE首次将单步采样机制引入视频超分领域,通过双阶段训练策略在保证质量的同时大幅提升推理速度。原创 2025-10-15 21:17:12 · 1227 阅读 · 1 评论 -
【超分辨率专题】DLoRAL:视频超分辨率的新范式,细节与时序一致的双重提升
本文提出了一种基于扩散模型的视频超分辨率新方法DLoRAL,通过双LoRA学习范式将时序一致性和空间细节解耦优化。该方法设计了跨帧检索模块(CFR)提取退化鲁棒的时序特征,并采用分阶段训练策略交替优化两个目标。实验表明,DLoRAL在保持时间一致性的同时生成更丰富的细节,且推理速度比现有方法快约10倍。该方法为视频超分辨率任务提供了一种高效且高质量的解决方案。原创 2025-09-25 21:41:00 · 942 阅读 · 0 评论 -
【超分辨率专题】一种考量视频编码比特率优化能力的超分辨率基准
本文介绍了一个新的基准测试(benchmark),旨在评估超分辨率(SR)技术在视频压缩比特率优化中的应用。该研究提出了一个综合的评测框架,涵盖了5种视频编解码器和19种SR模型,并在不同压缩比特率下进行了测试。作者期望该工作能够推动SR在实时编解码场景中的应用,为低带宽高清视频传输提供技术路径。原创 2025-05-16 22:04:53 · 1300 阅读 · 0 评论 -
【超分辨率专题】PiSA-SR:单步Diff超分新突破,即快又好,还能在线调参
PiSA-SR框架,通过双LoRA设计实现像素级保真与语义级增强的解耦控制。采用残差学习策略,首阶段训练像素级LoRA(L2损失),次阶段冻结并联合训练语义级LoRA(LPIPS+CSD损失),形成PiSA模块。推理时通过调节λ_pix和λ_sem参数,用户可灵活平衡降噪与细节生成。相比多步Diffusion方法,PiSA-SR仅需单步推理,效果也非常能打。原创 2025-08-03 23:15:44 · 1081 阅读 · 0 评论 -
【超分辨率专题】OSEDiff:针对Real-World ISR的单步Diffusion
这是一种高效的单步扩散模型OSEDiff,用于真实世界图像超分辨率(Real-ISR)。方法创新点在于:1)直接以低质量图像作为扩散起点,消除随机性;2)采用LoRA微调预训练Stable Diffusion模型,结合变分分数蒸馏(VSD)正则化策略,仅需8.5M可训练参数。效果显著原创 2025-07-20 21:16:08 · 1570 阅读 · 0 评论
分享