一次方程多点拟合

  • 1、设直线方程 y = kx +b;

  • 2、已知5点数据为(xi,yi),i = 1-5;

  • 3、 x' = (x1+x2+x3+x4+x5)/5 , y' = (y1+y2+y3+y4+y5)/5;

  • 4、k = [ ∑(abs(xi-x')*abs(yi-y'))] /   [ ∑ ((abs(xi-x')^2)) ];               

  • 5、b = y' - kx';

在MATLAB中,多点拟合画圆通常是指通过最小二乘法或其他优化算法来拟合一组数据形成一个接近真实圆的数学模型。这种做法假设数据是由一个圆的方程生成的,圆的标准形式可以表示为(x - h)^2 + (y - k)^2 = r^2,其中(h, k)是圆心坐标,r是半径。 以下是使用MATLAB进行这个任务的基本步骤: 1. 准备数据:首先,你需要有一组二维坐标的数据,这些理论上应该分布在圆上或近似于圆的区域。 ```matlab % 假设你有如下的数据 x_data = [x1, x2, ...]; % 横坐标 y_data = [y1, y2, ...]; % 纵坐标 ``` 2. 建立模型:定义一个圆的函数,通常是一个平方误差函数,目标是最小化所有数据到圆上的垂直距离的总和。 ```matlab function err = circleFit(x, y, center, radius) % 计算每个数据到圆心的距离的平方 dists = sqrt((x - center(1)).^2 + (y - center(2)).^2); % 返回误差向量 err = dists - radius; end ``` 3. 非线性最小化:使用`fmincon`或`lsqcurvefit`函数求解圆心和半径的最优值,给定数据作为约束条件。 ```matlab options = optimoptions('fmincon', 'Algorithm', 'interior-point'); % 设置选项 initial_guess = [mean(x_data), mean(y_data), std(x_data)]; % 初始猜测 [xhat, yhat, rhohat] = lsqcurvefit(@circleFit, initial_guess, x_data, y_data, options); ``` 4. 绘制拟合圆:最后,你可以用找到的圆心和半径绘制出拟合的圆形。 ```matlab plot(x_data, y_data, 'o', xhat, yhat, 'b*') % 数据拟合圆心 hold on plot(radius, radius, 'k:', 'LineWidth', 2) % 原到半径的参考线 plot([xhat-radius, xhat+radius], [yhat-radius, yhat+radius], 'b') % 拟合圆的轮廓 hold off ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值