Hadoop单机版搭建

1. Jar包准备

在上一篇博客中已经准备好linux环境,看本篇博客之前请看楼主上一篇大数据简介博客,准备系统环境
下载以下jar包,传入linux服务器的opt目录下
hadoop-2.7.2-src.tar.gz ,apache-maven-3.6.0-bin.tar.gz,apache-ant-1.9.15-bin.tar.gz,protobuf-2.5.0.tar.gz

1.1 安装maven

# 1. 解压maven包
tar -zxvf apache-maven-3.6.0-bin.tar.gz
# 2. 修改profile文件
vim /etc/profile
# 3. 添加以下配置
export MAVEN_HOME=/opt/apache-maven-3.6.0
export PATH=$PATH:$MAVEN_HOME/bin
# 4. 文件生效
source /etc/profile
# 5. 验证
mvn -version

在这里插入图片描述

1.2 安装ant

# 1. 解压ant包
tar -zxvf apache-ant-1.9.15-bin.tar.gz
# 2. 修改profile文件
vim /etc/profile
# 3. 添加以下配置
export ANT_HOME=/opt/apache-ant-1.9.15
export PATH=$PATH:$ANT_HOME/bin
# 4. 文件生效
source /etc/profile
# 5. 验证
ant -version

在这里插入图片描述

1.3 安装glibc-headers和g++

yum install -y glibc-headers
yum install -y gcc-c++

1.4 安装make和cmake

yum install -y make
yum install -y cmake

1.5 安装protobuf

# 1. 解压protobuf包
tar -zxvf protobuf-2.5.0.tar.gz
# 2. 进入目录
cd protobuf-2.5.0
# 3. 编译
./configure
make
make check
make install
ldconfig
# 4. 修改profile文件
vim /etc/profile
# 5. 添加以下配置
export PROTOBUF_PATH=/opt/protobuf-2.5.0
export PATH=$PATH:$PROTOBUF_PATH
# 6. 文件生效
source /etc/profile
# 5. 验证
protoc --version

在这里插入图片描述

1.6 安装openssl库

yum install -y openssl-devel

1.7 安装ncurses库

yum install -y ncurses-devel

1.8 编译Hadoop源码

# 1. 回到opt目录
cd /opt
# 2. 解压hadoop
tar -zxvf hadoop-2.7.2-src.tar.gz
# 3. 进入hadoop目录
cd hadoop-2.7.2-src
# 4. 编译打包源码
mvn package -Pdist,native -DskipTests -Dtar
或者
mvn clean package -Pdist,native -DskipTests -Dtar
# 5. 复制编译报到opt目录下
cp hadoop-2.7.2.tar.gz /opt/
# 6. 解压
tar -zxvf hadoop-2.7.2.tar.gz
# 7. 修改profile文件
vim /etc/profile
# 8. 添加以下配置
export HADOOP_HOME=/opt/module/hadoop-2.7.2
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin
# 9. 配置生效
source /etc/profile

在这里插入图片描述

1.9 修改core-site.xml

vim etc/hadoop/core-site.xml

添加以下配置

<configuration>

<!--指定HDFS中NameNode的地址-->
        <property>
                <name>fs.defaultFS</name>
                <value>hdfs://localhost:9000</value>
        </property>
   <!--指定hadoop运行产生文件(DataNode)的存储目录-->
        <property>
                <name>hadoop.tmp.dir</name>
                <value>/opt/module/hadoop-2.7.2/data/tmp</value>
        </property>


</configuration>

1.10 修改hdfs-site.xml

vim etc/hadoop/hdfs-site.xml

添加以下配置

<!--指定HDFS副本数量,这里只设置了一个节点(hadoop01)副本数量为1-->
<configuration>
        <property>
                <name>dfs.replication</name>
                <value>1</value>
        </property>
</configuration>

1.11 启动

1.11.1 格式化namenode

第一次启动时格式化,以后就不要格式化了,如果之后再格式化则namenode为新生成的,就找不到DataNode

bin/hdfs namenode -format

1.11.2 启动namenode

sbin/hadoop-daemon.sh start namenode

1.11.3 启动datanode

sbin/hadoop-daemon.sh start datanode

1.11.4 查看系统进程

jps

在这里插入图片描述

1.11.5 测试是否启动成功

访问 http://192.168.1.100:50070查看是否启动成功
在这里插入图片描述

2. 词频统计

安装完单机版hadoop之后,我们做一个词频统计,在一个文本中查看每个字母出现的次数

2.1 创建存储目录

bin/hdfs dfs -mkdir -p /user/root/input

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
文件夹创建成功

2.2 上传文件资源

创建一个wc.txt文件,在文件里写入任务英文字母
在这里插入图片描述

上传文件资源

bin/hdfs dfs -put wc.txt /user/root/input

查看是否上传成功
在这里插入图片描述

2.3 运行MapReduce程序

这个是在单机版下本地版运行,并没有提交到yarn上。
hadoop会给我们提供一些mapreduce程序,我们由于没写mapreduce程序,可以用hadoop的示例来进行演示
在这里插入图片描述

执行命令

hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar wordcount /user/root/input /user/root/output

参数讲解
share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar :mapreduce程序
wordcount : 词频统计
/user/root/input : 测试文件目录
/user/root/output : 结果输入目录,输出目录必须是一个不存在的文件夹
在这里插入图片描述
在这里插入图片描述
点击下载查看次词频统计结果cd
在这里插入图片描述
在这里插入图片描述

2.4 删除输出结果

# 删除文件
hadoop dfs -rm -f /user/root/input/wc.txt
# 递归删除全部
hadoop dfs -rm -r /user/root/output

2.5 递归查看目录

hadoop fs -lsr /

3. 在YARN上运行MapReduce程序

3.1 停止datanode和namenode

要先停止datanode再停止namenode

sbin/hadoop-daemon.sh stop datanode
sbin/hadoop-daemon.sh stop namenode

3.2 yarn-env.sh 添加java环境变量

cd /etc/hadoop/
vim yarn-env.sh

添加以下配置
在这里插入图片描述

3.3 配置yarn-site.xml

vim yarn-site.xml

添加以下内容

<!--reducer获取数据的方式-->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>

<!--指定yarn的resourcemanager地址-->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop1.com</value>
</property>

3.4 配置mapred-site.xml

mapred-site.xml.template模板文件重命名mapred-site.xml

mv mapred-site.xml.template mapred-site.xml

修改mapred-site.xml

vim mapred-site.xml

添加以下配置

<!--运行MapReduce作业的运行时框架-->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>

3.5 启动namenode和datanode

启动时先启动namenode再启动datanode

sbin/hadoop-daemon.sh start namenode
sbin/hadoop-daemon.sh start datanode

3.6 启动resourcemanager

sbin/yarn-daemon.sh start resourcemanager

3.7 启动nodemanager

sbin/yarn-daemon.sh start nodemanager

3.8 检查启动成功

web浏览器中查看 : http://192.168.1.100:8088
在这里插入图片描述

3.9 执行mapreduce程序(wordcount示例)(如果以前执行产生过output目录,先删除)

hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar wordcount /user/root/input /user/root/output

运行成功
在这里插入图片描述

4. 配置日志

MapReduce 的 JobHistory Server,这是一个独立的服务,可通过 web UI 展示历史作业日志,之所以将其独立出来,是为了减轻 ResourceManager 负担。JobHistory Server 将会分析作业 运行日志,并展示作业的启动时间、结束时间、各个任务的运行时间,各种Counter数据等,并产生一个指向作业和任务日志的链接,其默认端口号为 19888。通常可以启动在一台独立的机器上。

4.1 停止各项服务

sbin/hadoop-daemon.sh stop datanode
sbin/hadoop-daemon.sh stop namenode
sbin/yarn-daemon.sh stop nodemanager
sbin/yarn-daemon.sh stop resourcemanager

4.2 配置mapred-site.xml

在mapred-site.xml文件中添加以下配置


<!--配置历史服务器的地址及端口-->
<property>
<name>mapreduce.jobhistory.address</name>
<value>hadoop1.com:10020</value>
</property>
<!--配置历史服务器的web界面地址与端口-->
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hadoop1.com:19888</value>
</property>

4.3 配置日志聚合

在yarn-site.xml文件中添加以下配置


<!--日志聚集功能使能-->
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<!--日志保留时间设置7天-->
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>604800</value>
</property>

4.4 启动服务

sbin/hadoop-daemon.sh start datanode
sbin/hadoop-daemon.sh start namenode
sbin/yarn-daemon.sh start resourcemanager
sbin/yarn-daemon.sh start nodemanager
mr-jobhistory-daemon.sh start historyserver

在这里插入图片描述

4.5 执行wordcount程序查看日志

hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar wordcount /user/root/input /user/root/output

访问http://192.168.1.100:19888/jobhistory 查看日志
在这里插入图片描述

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页