/*
* [题意]
* F(0) = 0; F(1) = 1; F(n) = F(n-1)+F(n-2); (斐波那契数列)
* 设C[i][j]为组合数i种元素中取j种元素的方法
* 给出n、m,求( C[n][0]*F(0)+C[n][1]*F(1)+...+C[n][k]*F(k) ) % m;
* [解题方法]
* 设矩阵 A = |1 1|
* |1 0|
* 设矩阵 B = (A^n)
* 则B[0][0] = F(n-1); B[0][1] = B[1][0] = F(n); B[1][1] = F(n-1);
* { 注:上述为斐波那契矩阵的性质 }
* 令D = ( C[n][0]*(A^0) + C[n][1]*(A^1) +...+ C[n][k]*(A^k) ) % m
* = ( (A + E)^n ) % m (E为单位阵)
* { 类比二次多项式(x+1)^n = C[n][0]+C[n][0]*x+...+C[n][k]*(x^k) }
* 则D[1][0]或D[0][1]即为所求
*/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define M 2
#define LL long long
#define FF(i, n) for(int i = 0; i < n; i++)
int ret[M][M], mod;
int init[M][M];
int ss[M][M] = {2, 1, 1, 1};
void ini(int n)
{
FF(i, n) FF(j, n) init[i][j] = ss[i][j];
}
void matmul(int a[][M], int b[][M], int n)
{
int tp[M][M] = {0};
FF(i, n) FF(k, n) if(a[i][k]) FF(j, n) if(b[k][j])
tp[i][j] = (tp[i][j] + (LL)a[i][k]*b[k][j]) % mod;
FF(i, n) FF(j, n) a[i][j] = tp[i][j];
}
void qmod(int n, int b)
{
FF(i, n) FF(j, n) ret[i][j] = (i==j);
for( ; b; b >>= 1)
{
if (b & 1) matmul(ret, init, n);
matmul(init, init, n);
}
}
int main()
{
int t, n;
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &n, &mod);
ini(M);
qmod(M, n);
printf("%d\n", ret[0][1]);
}
return 0;
}