深度学习 第十一讲 卷积神经网络(高级篇)

在这里插入图片描述
1.这个红圈圈画的块叫做Inception
2.concatenate就是将块拼接起来(长宽一样 channel不同)
3.Average pooling 人为指定stride =1,padding = 1(均值卷积核)
4.1*1卷积 表示卷积核也是1*1,可以融合不同通道相同位置像素的值,也就是信息融合
在这里插入图片描述
Inception module实现
在这里插入图片描述
在这里插入图片描述
沿着channel的维度拼接起来 (dim = 1)
在这里插入图片描述

import torch
from  torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import torch.nn.functional as F
import matplotlib.pyplot as plt
import torch.nn as nn
import time
import datetime

batch_size =64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))])
#将原始像素数据归一到(0,1)中 并基于均值0.1307和标准差0.3081来对数据进行标准化处理

train_dataset = datasets.MNIST(root='../dataset/mnist', train=True, download=True,transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True,batch_size=batch_size)
#(下载)加载训练集,之后进行batch分组
test_dataset = datasets.MNIST(root='../dataset/mnist', train=False,download=True,transform=transform)
test_loader = DataLoader(test_dataset,shuffle=False ,batch_size=batch_size)
#测试集

class InceptionA(nn.Module):
    def __init__(self, in_channels):
        super(InceptionA, self).__init__()
        self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        #1x1
        self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
        #1x1 5x5
        self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
        #1x1 3x3 3x3
        self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
        #1x1

    def forward(self,x):
        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
        return torch.cat(outputs, dim=1)   #shape: batch_size x C x H x W (经过一次Inception变换C=88)

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(88, 20, kernel_size=5)

        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)

        self.mp = nn.MaxPool2d(2)
        self.fc = nn.Linear(1408, 10)

    def forward(self,x):
        in_seze = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))  #输出通道数为10
        x = self.incep1(x)                  #输出通道数为88
        x = F.relu(self.mp(self.conv2(x)))  #输出通道数为20
        x = self.incep2(x)                  #输出通道数为88
        x = x.view(in_seze, -1)
        x = self.fc(x)
        return x

model= Net()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')#设置GPU
model.to(device)#将数据加载到GPU
#---计算损失和更新
criterion = torch.nn.CrossEntropyLoss()#交叉熵size_average=False
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum=0.5)#, momentum=0.5
#---计算损失和更新

def train(epoch):
    running_loss = 0.0 #计算loss的累积
    #num = []
    #loss_list = []
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)#将数据加载到GPU
        optimizer.zero_grad()

        #forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:#每训练300个数据输出一次
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 2000))
            running_loss = 0.0

        '''num.append(batch_idx)
        loss_list.append(loss.item())
    plt.plot(num, loss_list)
    plt.xlabel('num')
    plt.ylabel('loss')
    plt.show()  # 绘图'''

def test():
    correct = 0
    total = 0
    with torch.no_grad():#不计算梯度
        for data in test_loader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)#将数据加载到GPU
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))
    return correct / total

if __name__ == '__main__':
    time_start = time.time()  # 开始计时
    Accurancy = []
    epoch_list = []
    for epoch in range(10):
        train(epoch)
        #test()
        Accurancy.append(test())
        epoch_list.append(epoch)

    time_end = time.time()  # 结束计时
    print(datetime.timedelta(seconds= (time_end - time_start)))
    plt.plot(epoch_list, Accurancy)
    plt.xlabel('epoch')
    plt.ylabel('Accurancy')
    plt.show()#绘图

在这里插入图片描述
在这里插入图片描述

为了解决卷积层叠加太多导致梯度消失

Deep Residual Learning

在这里插入图片描述
这样数据就会在1附近,多个相乘不会为0,由于要加上x,所以Weight层输出维度要与x张量维度相同。才能做此运算,这种块叫做Residual Block(残差块)

实现一个简单的Residual Network

在这里插入图片描述
在这里插入图片描述

import torch
from  torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import torch.nn.functional as F
import matplotlib.pyplot as plt
import torch.nn as nn
import time
import datetime

batch_size =64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))])
#将原始像素数据归一到(0,1)中 并基于均值0.1307和标准差0.3081来对数据进行标准化处理

train_dataset = datasets.MNIST(root='../dataset/mnist', train=True, download=False,transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True,batch_size=batch_size)
#(下载)加载训练集,之后进行batch分组
test_dataset = datasets.MNIST(root='../dataset/mnist', train=False,download=False,transform=transform)
test_loader = DataLoader(test_dataset,shuffle=False ,batch_size=batch_size)
#测试集

class ResidualBlock(nn.Module):
    def __init__(self,channels):
        super(ResidualBlock,self).__init__()
        self.channels = channels
        ##输出的通道数要和x的通道数(输入的通道数)相同
        self.conv1 = nn.Conv2d(channels,channels,
                               kernel_size=3,
                               padding=1)
        #为了保证输出图像大小不变,padding=1
        self.conv2 = nn.Conv2d(channels, channels,
                               kernel_size=3,
                               padding=1)

    def forward(self,x):
        y = F.relu(self.conv1(x))
        y = self.conv2(y)
        return F.relu(x+y)
        #先求和后激活

class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv1 = nn.Conv2d(1,16,kernel_size=5)
        self.conv2 = nn.Conv2d(16,32,kernel_size=5)
        self.mp = nn.MaxPool2d(2)

        self.rblock1 = ResidualBlock(16)
        self.rblock2 = ResidualBlock(32)

        self.fc = nn.Linear(512,10)

    def forward(self,x):
        in_size = x.size(0)
        x = self.mp(F.relu(self.conv1(x)))
        x = self.rblock1(x)
        x = self.mp(F.relu(self.conv2(x)))
        x = self.rblock2(x)
        x = x.view(in_size,-1)
        x = self.fc(x)
        return x

model= Net()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')#设置GPU
model.to(device)#将数据加载到GPU
#---计算损失和更新
criterion = torch.nn.CrossEntropyLoss()#交叉熵size_average=False
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum=0.5)#, momentum=0.5
#---计算损失和更新

def train(epoch):
    running_loss = 0.0 #计算loss的累积
    #num = []
    #loss_list = []
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)#将数据加载到GPU
        optimizer.zero_grad()

        #forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:#每训练300个数据输出一次
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 2000))
            running_loss = 0.0

        '''num.append(batch_idx)
        loss_list.append(loss.item())
    plt.plot(num, loss_list)
    plt.xlabel('num')
    plt.ylabel('loss')
    plt.show()  # 绘图'''

def test():
    correct = 0
    total = 0
    with torch.no_grad():#不计算梯度
        for data in test_loader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)#将数据加载到GPU
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))
    return correct / total

if __name__ == '__main__':
    time_start = time.time()  # 开始计时
    Accurancy = []
    epoch_list = []
    for epoch in range(10):
        train(epoch)
        #test()
        Accurancy.append(test())
        epoch_list.append(epoch)

    time_end = time.time()  # 结束计时
    print(datetime.timedelta(seconds= (time_end - time_start)))
    plt.plot(epoch_list, Accurancy)
    plt.xlabel('epoch')
    plt.ylabel('Accurancy')
    plt.show()#绘图

在这里插入图片描述

不同的设计
在这里插入图片描述

这篇论文给了很多关于 residual block的设计

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值