TensorFlow MNIST的CNN实现——源码和运行结果

TensorFlow   MNIST的CNN实现——源码和运行结果


源码

[python]  view plain  copy
  1. #!/usr/bin/python  
  2. import tensorflow as tf  
  3. import sys  
  4. from tensorflow.examples.tutorials.mnist import input_data  
  5.   
  6. def weight_variable(shape):  
  7.   initial = tf.truncated_normal(shape, stddev=0.1)  
  8.   return tf.Variable(initial)  
  9.   
  10. def bias_variable(shape):  
  11.   initial = tf.constant(0.1, shape=shape)  
  12.   return tf.Variable(initial)  
  13.   
  14. def conv2d(x, W):  
  15.   return tf.nn.conv2d(x, W, strides=[1111], padding='SAME')  
  16.   
  17. def max_pool_2x2(x):  
  18.   return tf.nn.max_pool(x, ksize=[1221], strides=[1221], padding='SAME')  
  19.   
  20. mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)  
  21.   
  22. sess = tf.InteractiveSession()  
  23.   
  24. x = tf.placeholder("float", shape=[None784])  
  25. y_ = tf.placeholder("float", shape=[None10])  
  26.   
  27. W = tf.Variable(tf.zeros([784,10]))  
  28. b = tf.Variable(tf.zeros([10]))  
  29.   
  30. W_conv1 = weight_variable([55132])  
  31. b_conv1 = bias_variable([32])  
  32.   
  33. x_image = tf.reshape(x, [-128281])  
  34.   
  35. h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)  
  36. h_pool1 = max_pool_2x2(h_conv1)  
  37.   
  38. W_conv2 = weight_variable([553264])  
  39. b_conv2 = bias_variable([64])  
  40.   
  41. h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)  
  42. h_pool2 = max_pool_2x2(h_conv2)  
  43.   
  44. # Now image size is reduced to 7*7  
  45. W_fc1 = weight_variable([7 * 7 * 641024])  
  46. b_fc1 = bias_variable([1024])  
  47.   
  48. h_pool2_flat = tf.reshape(h_pool2, [-17*7*64])  
  49. h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)  
  50.   
  51. keep_prob = tf.placeholder("float")  
  52. h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)  
  53.   
  54. W_fc2 = weight_variable([102410])  
  55. b_fc2 = bias_variable([10])  
  56. y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)  
  57.   
  58.   
  59. cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))  
  60. train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)  
  61. correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))  
  62. accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))  
  63. sess.run(tf.initialize_all_variables())  
  64.   
  65. for i in range(20000):  
  66.   batch = mnist.train.next_batch(50)  
  67.   if i%100 == 0:  
  68.     train_accuracy = accuracy.eval(feed_dict={  
  69.         x:batch[0], y_: batch[1], keep_prob: 1.0})  
  70.     print "step %d, training accuracy %.3f"%(i, train_accuracy)  
  71.   train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})  
  72.   
  73. print "Training finished"  
  74.   
  75. print "test accuracy %.3f" % accuracy.eval(feed_dict={  
  76.     x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})  

运行结果

[plain]  view plain  copy
  1. Extracting MNIST_data/train-images-idx3-ubyte.gz  
  2. Extracting MNIST_data/train-labels-idx1-ubyte.gz  
  3. Extracting MNIST_data/t10k-images-idx3-ubyte.gz  
  4. Extracting MNIST_data/t10k-labels-idx1-ubyte.gz  
  5. step 0, training accuracy 0.140  
  6. step 100, training accuracy 0.840  
  7. step 200, training accuracy 0.900  
  8. step 300, training accuracy 0.840  
  9. step 400, training accuracy 0.980  
  10. step 500, training accuracy 0.940  
  11. ...  
  12. step 19900, training accuracy 1.000  
  13. Training finished  
  14. test accuracy 0.993  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值