TensorFlow MNIST的CNN实现——源码和运行结果
源码
- #!/usr/bin/python
- import tensorflow as tf
- import sys
- from tensorflow.examples.tutorials.mnist import input_data
- def weight_variable(shape):
- initial = tf.truncated_normal(shape, stddev=0.1)
- return tf.Variable(initial)
- def bias_variable(shape):
- initial = tf.constant(0.1, shape=shape)
- return tf.Variable(initial)
- def conv2d(x, W):
- return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
- def max_pool_2x2(x):
- return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
- mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
- sess = tf.InteractiveSession()
- x = tf.placeholder("float", shape=[None, 784])
- y_ = tf.placeholder("float", shape=[None, 10])
- W = tf.Variable(tf.zeros([784,10]))
- b = tf.Variable(tf.zeros([10]))
- W_conv1 = weight_variable([5, 5, 1, 32])
- b_conv1 = bias_variable([32])
- x_image = tf.reshape(x, [-1, 28, 28, 1])
- h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
- h_pool1 = max_pool_2x2(h_conv1)
- W_conv2 = weight_variable([5, 5, 32, 64])
- b_conv2 = bias_variable([64])
- h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
- h_pool2 = max_pool_2x2(h_conv2)
- # Now image size is reduced to 7*7
- W_fc1 = weight_variable([7 * 7 * 64, 1024])
- b_fc1 = bias_variable([1024])
- h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
- h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
- keep_prob = tf.placeholder("float")
- h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
- W_fc2 = weight_variable([1024, 10])
- b_fc2 = bias_variable([10])
- y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
- cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
- train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
- correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
- sess.run(tf.initialize_all_variables())
- for i in range(20000):
- batch = mnist.train.next_batch(50)
- if i%100 == 0:
- train_accuracy = accuracy.eval(feed_dict={
- x:batch[0], y_: batch[1], keep_prob: 1.0})
- print "step %d, training accuracy %.3f"%(i, train_accuracy)
- train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
- print "Training finished"
- print "test accuracy %.3f" % accuracy.eval(feed_dict={
- x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
运行结果
- Extracting MNIST_data/train-images-idx3-ubyte.gz
- Extracting MNIST_data/train-labels-idx1-ubyte.gz
- Extracting MNIST_data/t10k-images-idx3-ubyte.gz
- Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
- step 0, training accuracy 0.140
- step 100, training accuracy 0.840
- step 200, training accuracy 0.900
- step 300, training accuracy 0.840
- step 400, training accuracy 0.980
- step 500, training accuracy 0.940
- ...
- step 19900, training accuracy 1.000
- Training finished
- test accuracy 0.993