POJ 1785 : Binary Search Heap Construction

23 篇文章 0 订阅
7 篇文章 0 订阅
描述
Read the statement of problem G for the definitions concerning trees. In the following we define the basic terminology of heaps. A heap is a tree whose internal nodes have each assigned a priority (a number) such that the priority of each internal node is less than the priority of its parent. As a consequence, the root has the greatest priority in the tree, which is one of the reasons why heaps can be used for the implementation of priority queues and for sorting.

A binary tree in which each internal node has both a label and a priority, and which is both a binary search tree with respect to the labels and a heap with respect to the priorities, is called a treap. Your task is, given a set of label-priority-pairs, with unique labels and unique priorities, to construct a treap containing this data.
输入
The input contains several test cases. Every test case starts with an integer n. You may assume that 1 小于等于 n 小于等于 50000. Then follow n pairs of strings and numbers l1/p1,…,ln/pn denoting the label and priority of each node. The strings are non-empty and composed of lower-case letters, and the numbers are non-negative integers. The last test case is followed by a zero.
输出
For each test case output on a single line a treap that contains the specified nodes. A treap is printed as ( left sub-treap | label / priority | right sub-treap ). The sub-treaps are printed recursively, and omitted if leafs.
样例输入
7 a/7 b/6 c/5 d/4 e/3 f/2 g/1
7 a/1 b/2 c/3 d/4 e/5 f/6 g/7
7 a/3 b/6 c/4 d/7 e/2 f/5 g/1
0
样例输出
(a/7(b/6(c/5(d/4(e/3(f/2(g/1)))))))
(((((((a/1)b/2)c/3)d/4)e/5)f/6)g/7)
(((a/3)b/6(c/4))d/7((e/2)f/5(g/1)))
来源
Ulm Local 2004

我先是手写treap,常规插入,结果超时了…….

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
using namespace std;
char label[100], temp;
int n, pri;
int a[30010];

struct node
{
    node *son[2];
    char val[100];
    int rand_key;
};

void rotate(node *&root,int judge)       // ˜µƒ–˝◊™
{
    node *k = root->son[judge^1];
    root->son[judge^1] = k->son[judge];
    k->son[judge] = root;
    root = k;
}

void insert(node *&root,char val[100],int pri)       // ˜µƒ≤»Î
{
    if(root == NULL)
    {
        root = new node;
        root->son[0] = NULL;
        root->son[1] = NULL;
        root->rand_key = pri;
        strcpy(root->val,val);
        //root->val = val;
    }
    else
    {
        if(strcmp(val,root->val) > 0)        //µ›πÈ≤È’“”“◊” ˜
        {
            insert(root->son[1],val,pri);
            if(root->son[1]->rand_key > root->rand_key)     //–Œ≥…◊Ó¥Û÷µ∂—
                rotate(root,0);
        }
        else
        {
            insert(root->son[0],val,pri);
            if(root->son[0]->rand_key > root->rand_key)
                rotate(root,1);
        }

    }
}
//(< left sub-treap >< label >/< priority >< right sub-treap >).
void print(node *root)
{
    if(root == NULL)
        return;
    printf("(");
    print(root->son[0]);
    printf("%s/%d",root->val,root->rand_key);
    print(root->son[1]);
    printf(")");
}

int main()
{
    while(scanf("%d",&n) && n)
    {
        node *root = NULL;
        while(n--)
        {
            scanf(" %[a-z]/%d", label, &pri);//标签,/,优先级
            insert(root,label,pri);
        }
        print(root);
        printf("\n");
    }
    return 0;
}

然后参考了网上代码,写了一个treap,居然不超时
首先将第一关键字(搜索序的关键字)排序(笛卡尔树中序遍历结果是按照第一关键字升序的),然后逐个向树中插入元素,这时只需要考虑后插入的元素的优先级即可。
a、优先级比上一个节点优先级高:将这个节点调整为根节点。
b、优先级比上一个节点优先级低:将这个节点设为当前节点的右儿子

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;

struct node
{
    int val, lson, rson, fa;
    char s[100];
}a[50005];

int n;

bool cmp(node x, node y)
{
    return strcmp(x.s, y.s) < 0;
}

void Insert(int now)
{
    int j = now - 1;
    while (a[j].val < a[now].val)
        j = a[j].fa;
    a[now].lson = a[j].rson;
    a[j].rson = now;
    a[now].fa = j;
}
void Traval(int now)
{
    if (now == 0)
        return;

    printf("(");
    Traval(a[now].lson);
    printf("%s/%d", a[now].s, a[now].val);
    Traval(a[now].rson);
    printf(")");
}
int main() {
    while (scanf("%d",&n) && n)
    {
        for (int i=1; i<=n; i++)
        {
            scanf(" %[a-z]/%d", a[i].s, &a[i].val);
            a[i].lson = a[i].rson = a[i].fa = 0;
        }
        sort(a+1, a+n+1, cmp);
        a[0].val = 0xfffff;
        a[0].lson = a[0].rson = a[0].fa = 0;

        for (int i=1; i<=n; i++)
            Insert(i);
        Traval(a[0].rson);
        printf("\n");
    }
    return 0;
}

然后看到网上还有用线段树做的,转化成RMQ问题.
依然是现按第一关键字排序,然后就是区间询问最大值,这个最大值就是整个树的根,然后分别对左右两个区间进行查询.

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;

struct node
{
    char s[100];
    int val;
} a[50005];

int n, v[50005*4];

void build(int l, int r, int rt)
{
    if (l == r)
    {
        v[rt] = l;
        return ;
    }
    int mid = (l + r)/2;
    build(l, mid, rt*2);
    build(mid+1, r, rt*2+1);
    v[rt] = (a[v[rt*2]].val > a[v[rt*2+1]].val) ? v[rt*2] : v[rt*2+1];
}
int query(int L, int R, int l, int r, int rt)
{
    if (L <= l && r <= R)
        return v[rt];
    int ret1, ret2, mid = (l + r)/2;

    ret1 = ret2 = 0;

    if (L <= mid)
        ret1 = query(L, R, l, mid, rt*2);
    if (mid < R)
        ret2 = query(L, R, mid+1, r, rt*2+1);
    if (ret1 == 0)
        return ret2;
    if (ret2 == 0)
        return ret1;

    return (a[ret1].val > a[ret2].val) ? ret1 : ret2;
}
void print(int l, int r)
{
    if (l > r)
        return ;
    if (l == r)
    {
        printf("(%s/%d)", a[l].s, a[l].val);
        return ;
    }
    int m = query(l, r, 1, n, 1);
    printf("(");
    print(l, m-1);
    printf("%s/%d", a[m].s, a[m].val);
    print(m+1, r);
    printf(")");
}

bool cmp(node x, node y)
{
    return strcmp(x.s, y.s) < 0;
}

int main()
{
    while (scanf("%d", &n) && n)
    {
        for (int i=1; i<=n; i++)
            scanf(" %[a-z]/%d", a[i].s, &a[i].val);

        sort(a+1, a+n+1, cmp);
        build(1, n, 1);
        print(1, n);
        printf("\n");
    }
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值