n后问题
总时间限制: 1000ms 内存限制: 65536kB
描述
n 后问题要求在一个 n * n 格的棋盘上放置n个皇后,使得他们彼此不受攻击。按照国际象棋的规则,一个皇后可以攻击与之处在同一行或同一列或同一斜线上的其它任何棋子。因此,n 后问题等价于要求在一个 n * n 格的棋盘上放置 n 个皇后,使得任何 2 个皇后不能在同一行或同一列或同一斜线上。
输入
一个正整数n(1 <= n <= 12)
输出
输出一个正整数,表明对于给定的 n * n 的棋盘,共有多少种放置方法
样例输入
8
样例输出
92
解法一:184ms,而且已经记录了每行皇后的位置
#include <iostream>
using namespace std;
int n, sum;
int pos[14];//记录第 i 个皇后的位置
int can[14];//can[i] = 0表示可以放置
void f(int i)//放置第 i 行
{
int flag = 0;
for(int j=0;j<n;j++)
can[j] = 0;
for(int j=0;j<i;j++)
{
can[pos[j]] = 1;
if(i+pos[j]-j < n)
can[i+pos[j]-j] = 1;
if(i <= pos[j]+j)
can[pos[j]+j-i] = 1;
}
if(i == n-1)
{
for(int j=0;j<n;j++)
if(can[j] == 0)
sum++;
return;
}
for(int j=0;j<n;j++)
{
if(can[j] == 0)
{
flag = 1;
pos[i] = j;
f(i+1);
//还原 can 数组
for(int k=0;k<n;k++)
can[k] = 0;
for(int k=0;k<i;k++)
{
can[pos[k]] = 1;
if(i+pos[k]-k < n)
can[i+pos[k]-k] = 1;
if(i <= pos[k]+k)
can[pos[k]+k-i] = 1;
}
}
}
if(flag == 0)
return;
}
int main()
{
sum = 0;
cin>>n;
f(0);
cout<<sum;
return 0;
}
解法二:250ms
#include <iostream>
using namespace std;
int n, sum;
int pos[14];//记录第 i 个皇后的位置
void f(int i)//放置第 i 行
{
int flag = 0;
if(i == n)
{
sum++;
return;
}
for(int j=0;j<n;j++)
{
pos[i] = j;
flag = 1;
for(int k=0;k<i;k++)
{
if(pos[k]==j || j+i==pos[k]+k || j-i==pos[k]-k)
{
flag = 0; break;
}
}
if(flag)
f(i+1);
}
if(flag == 0)
return;
}
int main()
{
sum = 0;
scanf("%d",&n);
f(0);
printf("%d",sum);
return 0;
}