N后问题

本文探讨了N皇后问题,这是一个经典的计算机科学问题,要求在N×N的棋盘上放置N个皇后,使得它们互不攻击。提供了两种不同的算法实现方案,一种耗时184ms,另一种耗时250ms,展示了如何通过递归和冲突检查来找到所有可能的解决方案。
摘要由CSDN通过智能技术生成

n后问题
总时间限制: 1000ms 内存限制: 65536kB

描述
n 后问题要求在一个 n * n 格的棋盘上放置n个皇后,使得他们彼此不受攻击。按照国际象棋的规则,一个皇后可以攻击与之处在同一行或同一列或同一斜线上的其它任何棋子。因此,n 后问题等价于要求在一个 n * n 格的棋盘上放置 n 个皇后,使得任何 2 个皇后不能在同一行或同一列或同一斜线上。

输入
一个正整数n(1 <= n <= 12)
输出
输出一个正整数,表明对于给定的 n * n 的棋盘,共有多少种放置方法

样例输入
8
样例输出
92

解法一:184ms,而且已经记录了每行皇后的位置

#include <iostream>
using namespace std;

int n, sum;
int pos[14];//记录第 i 个皇后的位置
int can[14];//can[i] = 0表示可以放置

void f(int i)//放置第 i 行
{
    int flag = 0;
    for(int j=0;j<n;j++)
        can[j] = 0;
    for(int j=0;j<i;j++)
    {
        can[pos[j]] = 1;
        if(i+pos[j]-j < n)
            can[i+pos[j]-j] = 1;
        if(i <= pos[j]+j)
            can[pos[j]+j-i] = 1;
    }

    if(i == n-1)
    {
        for(int j=0;j<n;j++)
            if(can[j] == 0)
                sum++;
        return;
    }

    for(int j=0;j<n;j++)
    {
        if(can[j] == 0)
        {
            flag = 1;
            pos[i] = j;
            f(i+1);
            //还原 can 数组
            for(int k=0;k<n;k++)
                can[k] = 0;
            for(int k=0;k<i;k++)
            {
                can[pos[k]] = 1;
                if(i+pos[k]-k < n)
                    can[i+pos[k]-k] = 1;
                if(i <= pos[k]+k)
                    can[pos[k]+k-i] = 1;
            }
        }
    }
    if(flag == 0)
        return;
}

int main()
{
    sum = 0;
    cin>>n;
    f(0);
    cout<<sum;
    return 0;
}

解法二:250ms

#include <iostream>
using namespace std;

int n, sum;
int pos[14];//记录第 i 个皇后的位置

void f(int i)//放置第 i 行
{
    int flag = 0;

    if(i == n)
    {
        sum++;
        return;
    }

    for(int j=0;j<n;j++)
    {
        pos[i] = j;
        flag = 1;
        for(int k=0;k<i;k++)
        {
            if(pos[k]==j || j+i==pos[k]+k || j-i==pos[k]-k)
            {
                flag = 0; break;
            }
        }
        if(flag)
            f(i+1);
    }
    if(flag == 0)
        return;
}

int main()
{
    sum = 0;
    scanf("%d",&n);
    f(0);
    printf("%d",sum);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值