Follow up for “Unique Paths”:
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
思路:简单动态规划,grid[ i ][ j ]为1时,dp[ i ][ j ] = 0
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
int dp[110][110];
//处理第一列
for(int i=0;i<m;i++)
{
if(grid[i][0] == 1)
{
dp[i][0] = 0;
for(int j=i;j<m;j++)
dp[j][0] = 0;
break;
}
else
dp[i][0] = 1;
}
//处理第一行
for(int i=0;i<n;i++)
{
if(grid[0][i] == 1)
{
dp[0][i] = 0;
for(int j=i;j<n;j++)
dp[0][j] = 0;
break;
}
else
dp[0][i] = 1;
}
//处理中间部分
for(int i=1;i<m;i++)
{
for(int j=1;j<n;j++)
{
if(grid[i][j] == 1)
dp[i][j] = 0;
else
{
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
}
return dp[m-1][n-1];
}
};