POJ 3714 最近点对
描述
给定点集A和点集B,两个点集分别有N个顶点。
问任意顶点对(a,b)的最近距离是多少,其中a属于A,b属于B。
输入
第一行为数据个数T,表示接下来有T个测试数据。
对于每个测试数据:
第一行为顶点个数N。(N<=100,000)
接下来N行,每行两个整数,表示点集A中的N个点的坐标。
再接下来N行,每行两个整数,表示点集B中的N个点的坐标。
其中坐标均为小于等于1000000000的非负整数。
输出
对于每组测试数据,输出最近点对(a,b)的距离,其中a属于A,b属于B。保留3位小数。
样例输入
2
4
0 0
0 1
1 0
1 1
2 2
2 3
3 2
3 3
4
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
样例输出
1.414
0.000
解题思路
分治法,将点集划分成两部分a和b,计算a内部最小距离、b内部最小距离、以及a,b之间的最小距离。由于点是按照x坐标非降序排序,所以计算点集a/b之间最小距离时可以break,加快速度。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
int T, N;
struct point
{
long x;
long y;
char kind;
}p[201000], pp[201000];
bool cmp(point a, point b)
{
return a.x <= b.x;
}
double distance(point a, point b)
{
double t1 = (a.x-b.x)*(a.x-b.x);
double t2 = (a.y-b.y)*(a.y-b.y);
return sqrt(t1+t2);
}
double cal_dis(int begin, int end)
{
int mid = (begin+end)/2;
double left = 9999999, right = 9999999, inter = 9999999;
if(begin >= end)
return 9999999;
left = cal_dis(begin, mid);
right = cal_dis(mid+1, end);
// 计算两类间距离
for(int i=begin;i<=mid;i++)
{
for(int j=mid+1;j<=end;j++)
{
if(p[i].kind != p[j].kind)//两种点
{
if(p[j].x-p[i].x>inter*2)
break;
double dis = sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x) + (p[i].y-p[j].y)*(p[i].y-p[j].y));
//double dis = distance(p[i], p[j]);
if(dis < inter)
inter = dis;
}
}
}
return min(min(left,right), inter);
}
int main()
{
scanf("%d", &T);
while(T--)
{
scanf("%d", &N);
for(int i=0;i<N;i++)
{
scanf("%ld %ld", &p[i].x, &p[i].y);
p[i].kind = 'a';
}
for(int i=N;i<N*2;i++)
{
scanf("%ld %ld", &p[i].x, &p[i].y);
p[i].kind = 'b';
}
sort(p, p+N*2, cmp);
float min_dis = cal_dis(0, 2*N-1);
printf("%.3lf\n", min_dis);
}
return 0;
}