Minimum Window Substring

Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).

For example,
S = "ADOBECODEBANC"
T = "ABC"

Minimum window is "BANC".

Note:
If there is no such window in S that covers all characters in T, return the emtpy string "".

If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S.

class Solution {
public:
    int greater(int a[], int an, int b[], int bn){
        int i;
		if(an < bn){
			return false;
		}
        for(i = 0; i < 256; i++){
            if(a[i] < b[i]){
                return false;
            }
        }
        return true;
    }
    string minWindow(string S, string T) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        int tflag[256];
        int sflag[256];
        memset(tflag, 0, 256 * sizeof(int));
        memset(sflag, 0, 256 * sizeof(int));
        int i, j;
        int lens = S.size();
        int lent = T.size();
        for(i =0; i < lent; i++){
            tflag[T[i]]++;
        }
        vector<int> wind(lens, 0);
        int exist = false;
        for(i = 0; i < lens && !exist; i++){
            sflag[S[i]]++;
            if(greater(sflag, i+1, tflag, lent)){
                exist = true;
                wind[i] = i + 1;
                break;
            }
        }
		
        if(!exist){
            return "";
        }
        for(j = 0; j <= i; j++){
            sflag[S[j]]--;
            if(greater(sflag, i - j + 1, tflag, lent)){
                
            } else {
                wind[i] = i - j + 1;
                sflag[S[j]]++;
                break;
            }
        }
        
        for(i++; i < lens; i++){
            if(tflag[S[i]]){
                if(S[i] == S[i - wind[i - 1]]){
                    for(j = i - wind[i - 1] + 1; j < i; j++){
                        if(tflag[S[j]]){
                           if(sflag[S[j]] > tflag[S[j]]){
                               sflag[S[j]]--;
                           } else {
                               break;
                           }
                        }
                    }
                    wind[i] = i - j + 1;
                } else {
                    sflag[S[i]]++;
                    wind[i] = wind[i-1] + 1;
                }
            } else {
                wind[i] = wind[i-1] + 1;
            }
        }
        int minwind = 50000;
        int pos=0;
        for(i = 0; i < lens; i++){
            if(wind[i] && wind[i] < minwind){
                minwind= wind[i];
                pos = i;
            }
        }
        return S.substr(pos - wind[pos] + 1, wind[pos]);
    }
};



To solve this problem, we can use the sliding window approach again. Here's the algorithm: 1. Initialize two dictionaries: need and window. need stores the count of each character in t, and window stores the count of each character in the current window. 2. Initialize two pointers left and right to mark the current window, and two variables match and required to track the number of matched characters and the number of required characters respectively. 3. Initialize a variable min_len to a large value and a variable start to 0 to store the start index of the minimum window substring. 4. While the right pointer is less than the length of the string s: - If the character at s[right] is in need, add it to window and update match and required accordingly. - While all characters in need are included in window, update min_len and start accordingly, and remove the character at s[left] from window and update match and required accordingly. - Move the left pointer to the right. - Move the right pointer to the right. 5. Return the minimum window substring starting from index start and having length min_len, or the empty string if no such substring exists. Here's the Python code for the algorithm: ``` def min_window(s, t): need = {} for c in t: need[c] = need.get(c, 0) + 1 window = {} left = right = 0 match = 0 required = len(need) min_len = float('inf') start = 0 while right < len(s): if s[right] in need: window[s[right]] = window.get(s[right], 0) + 1 if window[s[right]] == need[s[right]]: match += 1 while match == required: if right - left + 1 < min_len: min_len = right - left + 1 start = left if s[left] in need: window[s[left]] -= 1 if window[s[left]] < need[s[left]]: match -= 1 left += 1 right += 1 return s[start:start+min_len] if min_len != float('inf') else "" ``` Example usage: ``` s = "ADOBECODEBANC" t = "ABC" print(min_window(s, t)) # Output: "BANC" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值