leetcode 1388. 3n 块披萨 动态规划 python

leetcode 1388. 3n 块披萨 动态规划 python

题目描述

给你一个披萨,它由 3n 块不同大小的部分组成,现在你和你的朋友们需要按照如下规则来分披萨:

你挑选 任意 一块披萨。
Alice 将会挑选你所选择的披萨逆时针方向的下一块披萨。
Bob 将会挑选你所选择的披萨顺时针方向的下一块披萨。
重复上述过程直到没有披萨剩下。
每一块披萨的大小按顺时针方向由循环数组 slices 表示。

请你返回你可以获得的披萨大小总和的最大值。

示例1:
示例1

输入:slices = [1,2,3,4,5,6]
输出:10
解释:选择大小为 4 的披萨,Alice 和 Bob 分别挑选大小为 3 和 5 的披萨。然后你选择大小为 6 的披萨,Alice 和 Bob 分别挑选大小为 2 和 1 的披萨。你获得的披萨总大小为 4 + 6 = 10 。

分析

这道题仔细分析,转换一下思路,其实是寻找不相邻的最大子数列和问题,与 leetcode 213 打家劫舍 II很类似,不同之处在于前者子数列的长度是 n / / 3 n//3 n//3(例如9个披萨,至多拿走3个),后者子数列没有长度限制。

思路清晰后,我们可以用动态规划来做。因为第一个和最后一个披萨是连成一个环的,为了方便进行动态规划,我们分成两次来做,分别去除第一个和最后一个披萨。这样假如拿走第一个(最后一个)披萨,而最后一个(第一个)没有在列表中,因此符合要求。

以9个披萨为例,定义dp[i][j],(0≤i<3,0≤j<9),表示当拿走slices[j]当作第i块披萨时,当前的最大披萨量。
转移方程为:dp[i][j] = max(dp[i-1][0:j-1]) + slices[j],因为[0:j-1]是左闭右开区间,因此表示从0到n-2。

代码

class Solution:
    def maxSizeSlices(self, slices: List[int]) -> int:
        n = len(slices)
        dp = [[0] * n for _ in range(n // 3)]
        t = slices[0]
        slices[0] = 0
        # 去掉第一个披萨
        res1 = self.helper(slices, dp)
        slices[0], slices[-1] = t, 0
        # 去掉最后一个披萨
        res2 = self.helper(slices, dp)
        return max(res1, res2)

    def helper(self, slices, dp):
        cur_max = 0
        for i in range(len(slices)):
            cur_max = max(cur_max, slices[i])
            dp[0][i] = slices[i]

        for i in range(1, len(slices) // 3):
            pre = dp[i-1][0]
            for j in range(len(slices)):
                if j <= 1:
                    dp[i][j] = slices[j]
                else:
                    pre = max(pre, dp[i-1][j-2])
                    dp[i][j] = pre + slices[j]
                cur_max = max(cur_max, dp[i][j])
        return cur_max
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值