问题描述:
相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏。该游戏是在一块铜板装置上,有三根杆(编号A、B、C),在A杆自下而上、由大到小按顺序放置64个金盘(如图1)。游戏的目标:把A杆上的金盘全部移到C杆上,并仍保持原有顺序叠好。操作规则:每次只能移动一个盘子,并且在移动过程中三根杆上都始终保持大盘在下,小盘在上,操作过程中盘子可以置于A、B、C任一杆上。
分析:对于这样一个问题,任何人都不可能直接写出移动盘子的每一步,但我们可以利用下面的方法来解决。设移动盘子数为n,为了将这n个盘子从A杆移动到C杆,可以做以下三步:
(1)以C盘为中介,从A杆将1至n-1号盘移至B杆;
(2)将A杆中剩下的第n号盘移至C杆;
这样问题解决了,但实际操作中,只有第二步可直接完成,而第一、三步又成为移动的新问题。以上操作的实质是把移动n个盘子的问题转化为移动n-1个盘,那一、三步如何解决?事实上,上述方法设盘子数为n, n可为任意数,该法同样适用于移动n-1个盘。因此,依据上法,可解决n -1个盘子从A杆移到B杆(第一步)或从B杆移到C杆(第三步)问题。现在,问题由移动n个盘子的操作转化为移动n-2个盘子的操作。依据该原理,层层递推,即可将原问题转化为解决移动n -2、n -3… … 3、2,直到移动1个盘的操作,而移动一个盘的操作是可以直接完成的。至此,我们的任务算作是真正完成了。而这种由繁化简,用简单的问题和已知的操作运算来解决复杂问题的方法,就是递归法。在计算机设计语言中,用递归法编写的程序就是递归程序。
算法实现:
#include<stdio.h>
void Hanoi(int n, char A, char B, char C)
{
if (n == 1)//如果只有一个直接从A移到B
{
printf("Move %d: from %c to %c\n", n, A, C);
}
else
{
Hanoi(n - 1, A, C, B);//把n - 1个从A移到B借助C
printf("Move %d: from %c to %c\n", n, A, C);
Hanoi(n - 1, B, A, C);//把n - 1个从B移到C借助A
}
}
int main()
{
int n;
char A = 'A'; //定义ABC表示三个柱子
char B = 'B';
char C = 'C';
printf("Input the number of disks:");
scanf_s("%d", &n);
printf("Steps of moving %d disks from A to C by means of B:\n", n);
Hanoi(n, A, B, C);
return 0;
}
总结:
汉诺塔问题本质上是一个递归问题,将A中的盘子移到C中需要先将A中盘子借助于C移动到B中,再借助A将B中盘子移动到C中以实现问题。在思考汉诺塔问题时可利用整体法的思路将n-1个盘子看作一个盘子进行思考。