HDU 3848

本文介绍了一种高效算法,用于求解无根树中任意两叶子节点间的最短路径。通过选择一个叶子节点作为根节点,算法首先计算从每个节点到叶子节点的最短距离,然后针对具有多个子节点的节点,选取两个最小距离来更新结果,最终得到最短路径。
摘要由CSDN通过智能技术生成

思路: 该题其实质让求无根树上两个最近叶节点之间的距离; 问题转化为  1在有根树(任选一节点做根,作者选的是一个叶节点)上先求从每个节点出发到leaf的最短距离,然后

对于每个至少有两个子结点的结点选出最小的两个距离更新结果;

#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#define INF 10000000
using namespace std;
typedef long long LL;

const int maxn = 10000 + 10;

struct node{
int to,len,cun;
node(int x=0,int y=0):to(x),len(y){}
};
vector<node> G[maxn];

void init(int n){
for(int i=1;i<=n;i++) G[i].clear();
}
int ans;
int dfs(int u,int fa)
{
   if(G[u].size()==1){
     if(G[u][0].to==fa) return 0;
     else{
      return  G[u][0].len+dfs(G[u][0].to,u);
     }
   }
   if(G[u].size()==2){
    int t=(G[u][0].to==fa ? 1:0);
    return G[u][t].len+dfs(G[u][t].to,u);
   }
   int min_=INF;
   for(int i=0;i<G[u].size();i++){
    int v=G[u][i].to,len=G[u][i].len;
    if(v!=fa){
            G[u][i].cun=len+dfs(v,u);
            min_=min(min_,G[u][i].cun);
    }
   }
   for(int i=0;i<G[u].size();i++)
       for(int j=i+1;j<G[u].size();j++)if(G[u][i].to!=fa&&G[u][j].to!=fa){
        ans=min(ans,G[u][i].cun+G[u][j].cun);
    }
   return min_;
}
int main()
{
    int n;
    while(scanf("%d",&n)==1&&n){

        init(n);
        for(int i=1;i<n;i++){
            int x,y,z;
            scanf("%d %d %d",&x,&y,&z);
            G[x].push_back(node(y,z));
            G[y].push_back(node(x,z));
        }

        ans=INF;
        for(int i=1;i<=n;i++) if(G[i].size()==1){
            ans=min(ans,dfs(i,-1));  break;
        }
        printf("%d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值