HDU 5401(计数dp)

题意描述:

原先设定第0颗树只有一个节点0,现在要生成第i颗数,选  ai, bi, (ai < i, bi< i) 中两个节点(ci , di)相连接,构成一个新的树,且ai中节点的编号不变, bi中的所有节点编号都要在原来的基础上+ai树的大小,这样保证编号连续,对于每颗树T而言 ,, F(T)=n1i=0n1j=i+1d(vi,vj) ( d(vi,vj)
即任意两点之间距离总和。


这是多校题解:

考虑爆搜,树iii生成后,两两点对路径分成两部分,一部分不经过中间的边,那么就是aia_iaibib_ibi的答案,如果经过中间的边,首先计算中间这条边出现的次数,也就是ai,bia_i,b_iai,bi子树大小的乘积。对于aia_iai,对答案的贡献为所有点到cic_ici的距离和乘上bib_ibi的子树大小。bib_ibi同理。

那么转化为计算在树iii中,所有点到某个点jjj的距离和。假设jjjaia_iai内,那么就转化成了aia_iaijjj这个点的距离总和加上bib_ibi内所有点到did_idi的总和加上did_idijjj的距离乘上子树bib_ibi的大小,称作第一类询问。

这样就化成了在树iii中两个点jjjkkk的距离,如果在同一棵子树中,可以递归下去,否则假设jjjaia_iaikkkbib_ibi中,那么距离为jjjcic_ici的距离加上kkkdid_idi的距离加上lil_ili,称作第二类询问。

然后对两类询问全都记忆化搜索即可。

接着考虑计算一下复杂度。

对于第二类询问,可以考虑询问的过程类似于线段树,只会有两个分支,中间的部分已经记忆化下来,不用再搜,时间复杂度O(m)O(m)O(m)

我们分析一下复杂度,首先对于第一类询问,在bib_ibi中到did_idi的点距离和已经由前面的询问得到,那么就转化为一个第一类询问和一个第二类询问,最多会被转化成O(m)O(m)O(m)个第二类询问。

所以每个询问复杂度是O(m2)O(m^2)O(m2),总复杂度O(m3)O(m^3)O(m3)

复杂度计算思考:

对于第一类询问,只会例如sum(a[i], c[i])递归计算时,每个会分成两个第一类询问和一个第二类询问,而两个第一类询问必有一个已经被计算过(可以手动分解看看前后关系)

,所以每次分解成一个第一类和一个第二类,复杂度为m*m。

dis计算也同理。

被记忆的也不会很多,每次最多多记录m*m个。

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <cctype>
#include <cmath>
#include <queue>
#define ls rt<<1
#define rs rt<<1|1
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define mem(a,n) memset(a,n,sizeof(a))
#define rep(i,n) for(int i=0;i<(int)n;i++)
#define rep1(i,x,y) for(int i=x;i<=(int)y;i++)
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
typedef pair<int,int> pii;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const ll oo = 1e12;
typedef pair<ll,ll> pll;
const int N = 65;
const int mod = 1e9+7;

map<pll,ll> M[N];
map<ll,ll> M2[N];
int n;
ll a[N],b[N],c[N],d[N],siz[N],ms[N],l[N],ans[N];
void init(){
  for(int i = 0; i < N;i++)
    M[i].clear(),M2[i].clear();
  M[0][pll(0,0)]=0;
  M2[0][0] = 0;
  siz[0] = ms[0] = 1;
}
ll dis(int i,ll j,ll k){
   if(j > k) swap(j,k);
   if(M[i].count(pll(j,k))) return M[i][pll(j,k)];
   if(k < siz[a[i]]) return M[i][pll(j,k)] = dis(a[i],j,k);
   if(j >= siz[a[i]]) return M[i][pll(j,k)] = dis(b[i],j-siz[a[i]],k-siz[a[i]]);
   return  M[i][pll(j,k)] = (dis(a[i],j,c[i])+l[i]+dis(b[i],d[i],k-siz[a[i]]))%mod;
}
ll sum(int i,ll j){
   if(M2[i].count(j)) return M2[i][j];
   if(j<siz[a[i]]) return  M2[i][j]=(sum(a[i],j)+(l[i]+dis(a[i],j,c[i]))*ms[b[i]]+sum(b[i],d[i]))%mod;
   if(j>=siz[a[i]]) return M2[i][j]=(sum(a[i],c[i])+(l[i]+dis(b[i],j-siz[a[i]],d[i]))*ms[a[i]]+sum(b[i],j-siz[a[i]]))%mod;
}
ll cal(int i){
   siz[i] = siz[a[i]]+siz[b[i]];
   ms[i] = siz[i]%mod;
   ans[i] = ans[a[i]]+ans[b[i]]+ms[a[i]]*ms[b[i]]%mod*l[i]%mod+ms[b[i]]*sum(a[i],c[i])+ms[a[i]]*sum(b[i],d[i]);
   ans[i]=ans[i]%mod;
   return ans[i];
}
int main()
{
   while(scanf("%d",&n)==1){
      init();
      for(int i=1;i<=n;i++){
         scanf("%I64d %I64d %I64d %I64d %I64d",&a[i],&b[i],&c[i],&d[i],&l[i]);
         printf("%I64d\n",cal(i));
      }
   }
   return 0;
}





  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值