组合c(m,n)的计算方法

问题:求解组合数C(n,m),即从n个相同物品中取出m个的方案数,由于结果可能非常大,对结果模10007即可。

方案1:

暴力求解,C(n,m)=n*(n-1)*...*(n-m+1)/m!,n<=15


 这种方案的缺陷是,在计算过程中很快ans就溢出了,一般情况下,n不能超过12。补救办法之一是将先乘后除改为交叉地进行乘除,先除能整除的,但也只能满足n稍微增大的情况,n最多只能满足两位数。补救办法之二是换用高精度运算,这样结果不会有问题,只是需要实现大数相乘、相除和取模等运算,实现起来比较麻烦,时间复杂度为O(n)。

int Combination(int n, int m) 
{ 
    const int M = 10007; 
    int ans = 1; 
    for(int i=n; i>=(n-m+1); --i) 
        ans *= i; 
    while(m) 
        ans /= m--; 
    return ans % M; 
}


方案2:

打表,C(n,m)=C(n-1,m-1)+C(n-1,m),n<=10,000

 

由于组合数满足以上性质,可以预先生成所有用到的组合数,使用时,直接查找即可。生成的复杂度为O(n^2),查询复杂度为O(1)。较方案一而言,支持的数量级大有提升,在1秒内,基本能处理10000以内的组合数。算法的预处理时间较长,另外空间花费较大,都是平方级的,优点是实现简单,查询时间快。

[cpp] 
const int M = 10007; 
const int MAXN = 1000; 
int C[MAXN+1][MAXN+1]; 
void Initial() 
{ 
    int i,j; 
    for(i=0; i<=MAXN; ++i) 
    { 
        C[0][i] = 0; 
        C[i][0] = 1; 
    } 
    for(i=1; i<=MAXN; ++i) 
    { 
        for(j=1; j<=MAXN; ++j) 
        C[i][j] = (C[i-1][j] + C[i-1][j-1]) % M; 
    } 
} 
int Combination(int n, int m) 
{ 
    return C[n][m]; 
} 


方案3:

质因数分解,C(n,m)=n!/(m!*(n-m)!),设n!分解因式后,质因数p的次数为a;对应地m!分解后p的次数为b;(n-m)!分解后p的次数为c;则C(n,m)分解后,p的次数为a-b-c。计算出所有质因子的次数,它们的积即为答案,即C(n,m)=p1  a1-b1-c1p2  a2-b2-c2…pk  ak-bk-ck。n!分解后p的次数为:n/p+n/p  2+…+n/p  k
算法的时间复杂度比前两种方案都低,基本上跟n以内的素数个数呈线性关系,而素数个数通常比n都小几个数量级,例如100万以内的素数不到8万个。用筛法生成素数的时间接近线性。该方案1秒钟能计算 1kw数量级的组合数。如果要计算更大,内存和时间消耗都比较大。

 

#include <cstdio>  
const int maxn=1000000; 
#include <vector>  
using namespace std; 
bool arr[maxn+1]={false}; 
vector<int> produce_prim_number() 
{ 
        vector<int> prim; 
        prim.push_back(2); 
        int i,j; 
        for(i=3;i*i<=maxn;i+=2) 
        { 
                if(!arr[i]) 
                { 
                        prim.push_back(i); 
                        for(j=i*i;j<=maxn;j+=i) 
                                arr[j]=true; 
                } 
        } 
        while(i<maxn) 
        { 
                if(!arr[i]) 
                        prim.push_back(i); 
                i+=2; 
        } 
        return prim; 
} 
//计算n!中素数因子p的指数  
int cal(int x,int p) 
{ 
        int ans=0; 
        long long rec=p; 
        while(x>=rec) 
        { 
                ans+=x/rec; 
                rec*=p; 
        } 
        return ans; 
} 
//计算n的k次方对m取模,二分法  
int pow(long long n,int k,int M) 
{ 
        long long ans=1; 
        while(k) 
        { 
                if(k&1) 
                { 
                        ans=(ans*n)%M; 
                } 
                n=(n*n)%M; 
                k>>=1; 
        } 
        return ans; 
} 
//计算C(n,m)  
int combination(int n,int m) 
{ 
        const int M=10007; 
        vector<int> prim=produce_prim_number(); 
        long long ans=1; 
        int num; 
        for(int i=0;i<prim.size()&&prim[i]<=n;++i) 
        { 
                num=cal(n,prim[i])-cal(m,prim[i])-cal(n-m,prim[i]); 
                ans=(ans*pow(prim[i],num,M))%M; 
        } 
        return ans; 
} 
int main() 
{ 
        int m,n; 
        while(~scanf("%d%d",&m,&n),m&&n) 
        { 
                printf("%d\n",combination(m,n)); 
        } 
        return 0; 
} 


方案四
Lucas定理,设p是一个素数(题目中要求取模的数也是素数),将n,m均转化为p进制数,表示如下:
满足下式:
  

即C(n,m)模p等于p进制数上各位的C(ni,mi)模p的乘积。利用该定理,可以将计算较大的C(n,m)转化成计算各个较小的C(ni,mi)。
该方案能支持整型范围内所有数的组合数计算,甚至支持64位整数,注意中途溢出处理。该算法的时间复杂度跟n几乎不相关了,可以认为算法复杂度在常数和对数之间。

#include <stdio.h>
const int M = 10007;
int ff[M+5];  //打表,记录n!,避免重复计算

//求最大公因数
int gcd(int a,int b)
{
    if(b==0)
 return a;
 else
 return gcd(b,a%b);
}

//解线性同余方程,扩展欧几里德定理
int x,y;
void Extended_gcd(int a,int b)
{
    if(b==0)
    {
       x=1;
       y=0;
    }
    else
    {
       Extended_gcd(b,a%b);
       long t=x;
       x=y;
       y=t-(a/b)*y;
    }
}

//计算不大的C(n,m)
int C(int a,int b)
{
    if(b>a)
 return 0;
    b=(ff[a-b]*ff[b])%M;
    a=ff[a];
    int c=gcd(a,b);
    a/=c;
    b/=c;
    Extended_gcd(b,M);
    x=(x+M)%M;
    x=(x*a)%M;
    return x;
}

//Lucas定理
int Combination(int n, int m)
{
        int ans=1;
 int a,b;
 while(m||n)
 {
         a=n%M;
 b=m%M;
 n/=M;
 m/=M;
 ans=(ans*C(a,b))%M;
 }
 return ans;
}

int main(void)
{
        int i,m,n;
 ff[0]=1;
 for(i=1;i<=M;i++)  //预计算n!
 ff[i]=(ff[i-1]*i)%M;
 
 scanf("%d%d",&n, &m);
 printf("%d\n",func(n,m));
 
 return 0;
}



  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值